Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-19085
J Membr Biol 1995 Nov 01;1481:65-78. doi: 10.1007/bf00234157.
Show Gene links Show Anatomy links

A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes.

Zampighi GA , Kreman M , Boorer KJ , Loo DD , Bezanilla F , Chandy G , Hall JE , Wright EM .


???displayArticle.abstract???
The Xenopus laevis oocyte is widely used to express exogenous channels and transporters and is well suited for functional measurements including currents, electrolyte and nonelectrolyte fluxes, water permeability and even enzymatic activity. It is difficult, however, to transform functional measurements recorded in whole oocytes into the capacity of a single channel or transporter because their number often cannot be estimated accurately. We describe here a method of estimating the number of exogenously expressed channels and transporters inserted in the plasma membrane of oocytes. The method is based on the facts that the P (protoplasmic) face in water-injected control oocytes exhibit an extremely low density of endogenous particles (212 +/- 48 particles/microns2, mean, SD) and that exogenously expressed channels and transporters increased the density of particles (up to 5,000/microns2) only on the P face. The utility and generality of the method were demonstrated by estimating the "gating charge" per particle of the Na+/glucose cotransporter (SGLT1) and a nonconducting mutant of the Shaker K+ channel proteins, and the single molecule water permeability of CHIP (Channel-like In-tramembrane Protein) and MIP (Major Intrinsic Protein). We estimated a "gating charge" of approximately 3.5 electronic charges for SGLT1 and approximately 9 for the mutant Shaker K+ channel from the ratio of Qmax to density of particles measured on the same oocytes. The "gating charges" were 3-fold larger than the "effective valences" calculated by fitting a Boltzmann equation to the same charge transfer data suggesting that the charge movement in the channel and cotransporter occur in several steps. Single molecule water permeabilities (pfs) of 1.4 x 10(-14) cm3/sec for CHIP and of 1.5 x 10(-16) cm3/sec for MIP were estimated from the ratio of the whole-oocyte water permeability (Pf) to the density of particles. Therefore, MIP is a water transporter in oocytes, albeit approximately 100-fold less effective than CHIP.

???displayArticle.pubmedLink??? 8558603
???displayArticle.link??? J Membr Biol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: mip slc5a1.2

References [+] :
Anderson, Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength. 1988, Pubmed