Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-19062
J Cell Sci 1995 Nov 01;108 ( Pt 11):3451-61.
Show Gene links Show Anatomy links

Xenopus lamin B3 has a direct role in the assembly of a replication competent nucleus: evidence from cell-free egg extracts.

Goldberg M , Jenkins H , Allen T , Whitfield WG , Hutchison CJ .


???displayArticle.abstract???
Xenopus egg extracts which assemble replication competent nuclei in vitro were depleted of lamin B3 using monoclonal antibody L6 5D5 linked to paramagnetic beads. After depletion, the extracts were still capable of assembling nuclei around demembranated sperm heads. Using field emission in lens scanning electron microscopy (FEISEM) we show that most nuclei assembled in lamin B3-depleted extracts have continuous nuclear envelopes and well formed nuclear pores. However, several consistent differences were observed. Most nuclei were small and only attained diameters which were half the size of controls. In a small number of nuclei, nuclear pore baskets, normally present on the inner aspect of the nuclear envelope, appeared on its outer surface. Finally, the assembly of nuclear pores was slower in lamin B3-depleted extracts, indicating a slower overall rate of nuclear envelope assembly. The results of FEISEM were confirmed using conventional TEM thin sections, where again the majority of nuclei assembled in lamin B3-depleted extracts had well formed double unit membranes containing a high density of nuclear pores. Since nuclear envelope assembly was mostly normal but slow in these nuclei, the lamin content of 'depleted' extracts was investigated. While lamin B3 was recovered efficiently from cytosolic and membrane fractions by our procedure, a second minor lamin isoform, which has characteristics similar to those of the somatic lamin B2, remained in the extract. Thus it is likely that this lamin is necessary for nuclear envelope assembly. However, while lamin B2 did not co-precipitate with lamin B3 during immunodepletion experiments, several protein species did specifically associate with lamin B3 on paramagnetic immunobeads. The major protein species associated with lamin B3 migrated with molecular masses of 102 kDa and 57 kDa, respectively, on one-dimensional polyacrylamide gels. On two-dimensional O'Farrell gels the mobility of the 102 kDa protein was identical to the mobility of a major nuclear matrix protein, indicating a specific association between lamin B3 and other nuclear matrix proteins. Nuclei assembled in lamin B3-depleted extracts did not assemble a lamina, judged by indirect immunofluorescence, and failed to initiate semi-conservative DNA replication. However, by reinoculating depleted extracts with purified lamin B3, nuclear lamina assembly and DNA replication could both be rescued. Thus it seems likely that the inability of lamin-depleted extracts to assemble a replication competent nucleus is a direct consequence of a failure to assemble a lamina.

???displayArticle.pubmedLink??? 8586657
???displayArticle.link??? J Cell Sci


Species referenced: Xenopus
Genes referenced: igf2bp3 lmnb3
???displayArticle.antibodies??? Lmnb1 Ab1 Lmnb1 Ab4 Lmnb2 Ab1 Lmnb2 Ab4 Lmnb3 Ab1