Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
???displayArticle.abstract???
Studies of the Xenopus organizer have laid the foundation for our understanding of the conserved signaling pathways that pattern vertebrate embryos during gastrulation. The two primary activities of the organizer, BMP and Wnt inhibition, can regulate a spectrum of genes that pattern essentially all aspects of the embryo during gastrulation. As our knowledge of organizer signaling grows, it is imperative that we begin knitting together our gene-level knowledge into genome-level signaling models. The goal of this paper was to identify complete lists of genes regulated by different aspects of organizer signaling, thereby providing a deeper understanding of the genomic mechanisms that underlie these complex and fundamental signaling events. To this end, we ectopically overexpress Noggin and Dkk-1, inhibitors of the BMP and Wnt pathways, respectively, within ventral tissues. After isolating embryonic ventral halves at early and late gastrulation, we analyze the transcriptional response to these molecules within the generated ectopic organizers using oligonucleotide microarrays. An efficient statistical analysis scheme, combined with a new Gene Ontology biological process annotation of the Xenopus genome, allows reliable and faithful clustering of molecules based upon their roles during gastrulation. From this data, we identify new organizer-related expression patterns for 19 genes. Moreover, our data sub-divides organizer genes into separate head and trunk organizing groups, which each show distinct responses to Noggin and Dkk-1 activity during gastrulation. Our data provides a genomic view of the cohorts of genes that respond to Noggin and Dkk-1 activity, allowing us to separate the role of each in organizer function. These patterns demonstrate a model where BMP inhibition plays a largely inductive role during early developmental stages, thereby initiating the suites of genes needed to pattern dorsal tissues. Meanwhile, Wnt inhibition acts later during gastrulation, and is essential for maintenance of organizer gene expression throughout gastrulation, a role which may depend on its ability to block the expression of a host of ventral, posterior, and lateral fate-specifying factors.
???displayArticle.pubmedLink???
16756679
???displayArticle.pmcLink???PMC1513553 ???displayArticle.link???BMC Dev Biol ???displayArticle.grants???[+]
Figure 1. Generating tissue samples with different aspects of organizer activity. (A) shows an overview of injection and embryo sorting procedure used to produce samples for microarray analysis. (B) shows the four injection mixtures below their respective tailbud phenotypes. Embryos ventrally injected with these mixtures were bisected at either stg. 10 or stg. 11.5 to produce the tissue conditions in (C).
Figure 7. Relaxed statistical criteria select for additional genes with organizer-related expression patterns. The cluster results for the second set of RP criteria, which required correlated expression in the Nog+Dkk and Dor conditions, identifies additional unknown genes with organizer-related expression patterns. The hierarchical tree is on the far left, followed by the clustergram, and then the summary of the RP results at 10% FDR. Colors and columns are same as described in the Figure 3A. Black ticks between the cluster tree and the clustergram mark every tenth gene, allowing referencing to 3 for the gene identities. Genes in this list that lacked described gastrula stage expression patterns were analyzed by whole mount in situ hybridization. The top of the cluster contains genes that were repressed in the Nog+Dkk and Dor conditions; unknown genes within this group are excluded from organizer tissues (magenta box). The bottom of the cluster contains genes that were activated in the Nog+Dkk and Dor conditions; unknown genes within this group are enriched in organizer tissues (orange box). Each tested gene is labeled with its name and the Affymetrix probe set number. Genes marked "no pattern" showed no staining, or a non-specific staining pattern that was similar to sense controls. Genes marked "no gastrula pattern," showed no pattern during gastrula stages, but did show specific patterns at later stages that are not shown here. Each photo is labeled with the developmental stage of the embryo in the bottom left corner, and the orientation in the bottom right corner. veg: vegetal view, dorsal faces up. dor: dorsal view, anterior faces up. gene name was assigned by protein sequence similarity using Homologene.
Figure 8. Noggin and Dkk-1 regulate the expression of newly identified genes. 4-cell embryos were ventrally injected with the noggin and/or dkk-1 concentrations described in Figure 1, and tested by in situ hybridization for patterns of ectopic induction or repression. In each case the observed in situ patterns confirm the microarray patterns (A-D) LRIG2 shows ectopic ventral expression in both the Noggin and the Noggin+Dkk-1 overexpressing embryos, but not in the Dkk-1 embryos. (E-H) ARHGEF3 shows ectopic ventral expression only in the Noggin+Dkk-1 overexpressing embryos. (I-L) HES6 shows ectopic ventral repression in the Noggin+Dkk-1 and the Dkk-1 overexpressing embryos. (M-P) Frzb3 expression is ectopically repressed by Noggin or Noggin+Dkk-1 overexpression. (Q-T) Xl.3529.1.A1 expression is ectopically repressed by Noggin+Dkk-1 and Dkk-1 overexpression. (U-X) Gadd45g is ectopically induced only in the Noggin+Dkk-1 condition. All embryos are between stages 10.5 and 11 and are shown in vegetal view with dorsal side facing up.
Figure 9. The head and trunk sub-cluster genes show distinct responses to organizer signaling. Three genes were selected from each sub-cluster, and tested by in situ hybridization at stage 10.5 (top row) and 11.5 (bottom row), in embryos ventrally injected with noggin or noggin+dkk-1. Black arrowheads mark ectopic staining. Xlim-1 (A-F) and otx2 (M-R) expression are similarly induced at stage 10.5 by Noggin and Noggin+Dkk-1, but by stage 11.5 Noggin+Dkk-1 induction is clearly much stronger and more widespread. For Xlim-1, ectopic expression induced by Noggin+Dkk-1 is observed migrating away from the blastopore lip region, but never for Noggin alone. (M-R) Frzb-1 expression is ectopically induced only by the combination of Noggin+Dkk-1, not Noggin alone, and neither can sustain expression into late gastrulation. For the three trunk genes, FoxD5b (XFD-12') (S-X), FoxA4a (pintallavis) (Y-D'), and Xsox-2 (E'-J') ectopic induction is similar in both intensity and spread in Noggin and Noggin+Dkk-1 overexpressing embryos at stage 10.5 and 11.5. A-L and S-J' vegetal view; M-R animal view. Dorsal faces up in all pictures. (K') Otx2 expression was assayed by real-time RT-PCR, in stage 11.5 ventral tissues injected with the same mixtures used to create the microarray samples. Weak, but significant (p = 0.043 by one-sided t-test), induction in Dkk-1 overexpressing tissues are seen compared to ventral, supporting the weak Dkk-1 inductions seen on the microarray. Error bars show the standard error calculated from two biological replicates.
Figure 6. Clusters 3 and 4 faithfully predict expression patterns for unknown genes. Genes found in clusters 3 and 4 that lacked described gastrula stage expression patterns were analyzed by whole mount in situ hybridization. Unknown genes from cluster 3 that showed a specific pattern are enriched in organizer tissues (orange box), and unknown genes from cluster 4 that showed a specific pattern are excluded from organizer tissues (magenta box). Each tested gene is labeled with its name and the Affymetrix probe set number. Genes marked "no pattern" showed no staining, or a non-specific staining pattern that was similar to sense controls. Genes marked "no gastrula pattern," showed no pattern during gastrula stages, but did show specific pat- terns at later stages that are not shown here. Each photo is labeled with the developmental stage of the embryo in the bottom left corner, and the orientation in the bottom right corner. veg: vegetal view, dorsal faces up. dor: dorsal view, anterior faces up.
Figure 2. Expression variation among the samples. (A) and (B) show scatter plot comparisons of the mean Nog+Dkk or Dor stg. 10 log2 expression values vs the mean stg. 10 Ven log2expression values. Probe sets measuring two known organizer genes, otx2 (green) and gsc (red), are labeled within the plots (otx2 probe sets: Xl.1268.1.S1_at, Xl.3004.1.A1_at, Xl.11672.1.A1_at, and XlAffx.1.11.S1_at; gsc probe sets: Xl.801.1.A1_at, Xl.801.1.S1_at, and Xl.801.1.S1_s_at). (C) R-square regression value summaries for each experimental condition compared to the stage-matched ventral condition. (D) Scatter plot comparison of the mean Nog and Ven clutch-1 log2 expression values vs. the mean Nog and Ven clutch-2 log2 expression values. Note that the clutch variation clearly exceeds differences between the experimental conditions (A-C). Contributing to this variation, many genes show a shift in the average expression between the two clutches, but retain a similar pattern in response to the experimental conditions. As an example, log2 expression values for otx5-A (Xl.3452.1.A1_at) are shown in (E). After standardizing the average log2 expression of both clutches, on a gene-by-gene basis, the comparison from (D) was repeated in (F), eliminating most clutch variation.
Figure 3. Clustering genes regulated by organizer signaling. (A) Key to the hierarchical cluster format used throughout the paper. The clustergram shows the standardized expression intensity for the ten experimental conditions, after replicates have been averaged. To the right of the clustergram, the RP method results at 10% FDR are summarized in four columns representing the comparisons of Nog, Nog+Dkk, Dkk, or Dor to Ven. The colors found in the row for each gene represent the tests passed by that gene. Two colors in one column indicate that a gene passed the column's test at both stages. (B) Hierarchical cluster of all the selected genes. The far right shows the hierarchical cluster tree, followed by the clustergram, then RP results. Black ticks between the cluster tree and the clustergram mark every tenth gene, allowing referencing to Additional file 2 for the gene identities. The list break into four main clusters, labeled with red, yellow, orange, and magenta bars. Expanded views of clusters 3 and 4 can be found in Figures 4 and 5, respectively.
Figure 4. Cluster 3 is enriched for genes involved in organizer function. This figure shows an enlarged view of all of the genes in cluster 3, from Figure 3. Each row is annotated with the probe set number and matching gene name. Genes with names in blue have a described role in organizer function. Genes with names in red have no described function during gastrula stage development. Genes with names in green have a published role or expression pattern that is not organizer related. † gene name was assigned by protein sequence homology using the NCBI Homologene database.
Figure 5. Cluster 4 is enriched for genes involved in ventral, lateral, and posterior patterning. This figure shows an enlarged view of all the genes in cluster 4, from Figure 3. Each row is annotated with the probe set number and matching gene name. Genes with names in blue have a described role or specific expression pattern in ventral, lateral, or posterior tissues. Genes with names in red have no described function during gastrula stage development. Genes with names green have a published role or expression pattern that is not ventral, lateral, or posterior related. † gene name was assigned by protein sequence homology using the Homologene database.
Altmann,
Microarray-based analysis of early development in Xenopus laevis.
2001, Pubmed,
Xenbase
Altmann,
Microarray-based analysis of early development in Xenopus laevis.
2001,
Pubmed
,
Xenbase
Andreazzoli,
Cloning and expression of noz1, a zebrafish zinc finger gene related to Drosophila nocA.
2001,
Pubmed
Arima,
Global analysis of RAR-responsive genes in the Xenopus neurula using cDNA microarrays.
2005,
Pubmed
,
Xenbase
Ashburner,
Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.
2000,
Pubmed
Baldessari,
Global gene expression profiling and cluster analysis in Xenopus laevis.
2005,
Pubmed
,
Xenbase
Barrett,
NCBI GEO: mining millions of expression profiles--database and tools.
2005,
Pubmed
Blitz,
Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle.
1995,
Pubmed
,
Xenbase
Bouwmeester,
Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer.
1996,
Pubmed
,
Xenbase
Breitling,
Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments.
2004,
Pubmed
Cho,
Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid.
1991,
Pubmed
,
Xenbase
Chung,
Screening of FGF target genes in Xenopus by microarray: temporal dissection of the signalling pathway using a chemical inhibitor.
2004,
Pubmed
,
Xenbase
Condie,
Posterior expression of a homeobox gene in early Xenopus embryos.
1987,
Pubmed
,
Xenbase
Davis,
Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning.
2001,
Pubmed
,
Xenbase
De Robertis,
Dorsal-ventral patterning and neural induction in Xenopus embryos.
2004,
Pubmed
,
Xenbase
Devic,
Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis.
1996,
Pubmed
,
Xenbase
Djiane,
Role of frizzled 7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis.
2000,
Pubmed
,
Xenbase
Eisen,
Cluster analysis and display of genome-wide expression patterns.
1998,
Pubmed
Furlong,
Patterns of gene expression during Drosophila mesoderm development.
2001,
Pubmed
Glinka,
Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction.
1998,
Pubmed
,
Xenbase
Harland,
In situ hybridization: an improved whole-mount method for Xenopus embryos.
1991,
Pubmed
,
Xenbase
Harland,
Formation and function of Spemann's organizer.
1997,
Pubmed
Heasman,
Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach.
2000,
Pubmed
,
Xenbase
Hosack,
Identifying biological themes within lists of genes with EASE.
2003,
Pubmed
Hoyle,
nlz gene family is required for hindbrain patterning in the zebrafish.
2004,
Pubmed
Irizarry,
Exploration, normalization, and summaries of high density oligonucleotide array probe level data.
2003,
Pubmed
Itoh,
Interaction of dishevelled and Xenopus axin-related protein is required for wnt signal transduction.
2000,
Pubmed
,
Xenbase
Kuroda,
Cloning a novel developmental regulating gene, Xotx5: its potential role in anterior formation in Xenopus laevis.
2000,
Pubmed
,
Xenbase
Lamb,
Neural induction by the secreted polypeptide noggin.
1993,
Pubmed
,
Xenbase
Leyns,
Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer.
1997,
Pubmed
,
Xenbase
Liu,
NetAffx: Affymetrix probesets and annotations.
2003,
Pubmed
McGrew,
Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin.
1995,
Pubmed
,
Xenbase
Melby,
Regulation of dorsal gene expression in Xenopus by the ventralizing homeodomain gene Vox.
1999,
Pubmed
,
Xenbase
Merlo,
Multiple functions of Dlx genes.
2000,
Pubmed
Muñoz-Sanjuán,
Gene profiling during neural induction in Xenopus laevis: regulation of BMP signaling by post-transcriptional mechanisms and TAB3, a novel TAK1-binding protein.
2002,
Pubmed
,
Xenbase
Nakata,
Xenopus Zic3, a primary regulator both in neural and neural crest development.
1997,
Pubmed
,
Xenbase
Niehrs,
Regionally specific induction by the Spemann-Mangold organizer.
2004,
Pubmed
Onichtchouk,
The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm.
1996,
Pubmed
,
Xenbase
Pannese,
The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions.
1995,
Pubmed
,
Xenbase
Papalopulu,
Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals.
1993,
Pubmed
,
Xenbase
Peiffer,
A Xenopus DNA microarray approach to identify novel direct BMP target genes involved in early embryonic development.
2005,
Pubmed
,
Xenbase
Pohl,
Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development.
2005,
Pubmed
,
Xenbase
Quackenbush,
The TIGR gene indices: reconstruction and representation of expressed gene sequences.
2000,
Pubmed
Ruiz i Altaba,
Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis.
1992,
Pubmed
,
Xenbase
Runko,
Nlz belongs to a family of zinc-finger-containing repressors and controls segmental gene expression in the zebrafish hindbrain.
2003,
Pubmed
Salic,
Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos.
1997,
Pubmed
,
Xenbase
Sasai,
Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes.
1994,
Pubmed
,
Xenbase
Schmidt,
Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox.
1996,
Pubmed
,
Xenbase
Shapira,
The Xvex-1 antimorph reveals the temporal competence for organizer formation and an early role for ventral homeobox genes.
2000,
Pubmed
,
Xenbase
Shapira,
A role for the homeobox gene Xvex-1 as part of the BMP-4 ventral signaling pathway.
1999,
Pubmed
,
Xenbase
Shin,
Identification of neural genes using Xenopus DNA microarrays.
2005,
Pubmed
,
Xenbase
Smith,
Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos.
1992,
Pubmed
,
Xenbase
Stathopoulos,
Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo.
2002,
Pubmed
Suzuki,
Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4.
1997,
Pubmed
,
Xenbase
Vinayagam,
Applying Support Vector Machines for Gene Ontology based gene function prediction.
2004,
Pubmed
,
Xenbase
Wessely,
Analysis of Spemann organizer formation in Xenopus embryos by cDNA macroarrays.
2004,
Pubmed
,
Xenbase
Yasuo,
Role of Goosecoid, Xnot and Wnt antagonists in the maintenance of the notochord genetic programme in Xenopus gastrulae.
2001,
Pubmed
,
Xenbase
von Dassow,
Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene.
1993,
Pubmed
,
Xenbase