Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-26218
J Comp Physiol B 1990 Jan 01;1602:161-5. doi: 10.1007/bf00300948.
Show Gene links Show Anatomy links

Ca-sensitive sodium absorption in the colon of Xenopus laevis.

Krattenmacher R , Voigt R , Clauss W .


???displayArticle.abstract???
Transepithelial electrogenic Na transport (INa) was investigated in the colon of the frog Xenopus laevis with electrophysiological methods in vitro. The short circuit current (Isc) of the voltage-clamped tissue was 24.2 +/- 1.8 microA.cm-2 (n = 10). About 60% of this current was generated by electrogenic Na transport. Removal of Ca2+ from the mucosal Ringer solution stimulated INa by about 120%. INa was not blockable by amiloride (0.1 mmol.l-1), a specific Na-channel blocker in epithelia, but a fully and reversible inhibition was achieved by mucosal application of 1 mmol.l-1 lanthanum (La3+). No Na-self-inhibition was found, because INa increased linearly with the mucosal Na concentration. A stimulation of INa by antidiuretic hormones was not possible. The analysis of fluctuations in the short circuit current (noise analysis) indicated that Na ions pass the apical cell membrane via a Ca-sensitive ion channel. The results clearly demonstrate that in the colon of Xenopus laevis Na ions are absorbed through Ca-sensitive apical ion channels. They differ considerably in their properties and regulation from the amiloride-sensitive Na channel which is "typically" found in the colon of vertebrates.

???displayArticle.pubmedLink??? 2167905
???displayArticle.link??? J Comp Physiol B



References [+] :
Aelvoet, Activation and blockage of a calcium-sensitive cation-selective pathway in the apical membrane of toad urinary bladder. 1988, Pubmed