Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-28618
Mol Cell Biol 1986 Jul 01;67:2536-42.
Show Gene links Show Anatomy links

Differential order of replication of Xenopus laevis 5S RNA genes.

Guinta DR , Korn LJ .


???displayArticle.abstract???
In Xenopus laevis there are two multigene families of 5S RNA genes: the oocyte-type 5S RNA genes which are expressed only in oocytes and the somatic-type 5S RNA genes which are expressed throughout development. The Xenopus 5S RNA replication-expression model of Gottesfeld and Bloomer (Cell 28:781-791, 1982) and Wormington et al. (Cold Spring Harbor Symp. Quant. Biol. 47:879-884, 1983) predicts that the somatic-type 5S RNA genes replicate earlier in the cell cycle than do the oocyte-type genes. Hence, the somatic-type 5S RNA genes have a competitive advantage in binding the transcription factor TFIIIA in somatic cells and are thereby expressed to the exclusion of the oocyte-type genes. To test the replication-expression model, we determined the order of replication of the oocyte- and somatic-type 5S RNA genes. Xenopus cells were labeled with bromodeoxyuridine, stained for DNA content, and then sorted into fractions of S phase by using a fluorescence-activated cell sorter. The newly replicated DNA containing bromodeoxyuridine was separated from the lighter, unreplicated DNA by equilibrium centrifugation and was hybridized with DNA probes specific for the oocyte- and somatic-type 5S RNA genes. In this way we found that the somatic-type 5S RNA genes replicate early in S phase, whereas the oocyte-type 5S RNA genes replicate late in S phase, demonstrating a key aspect of the replication-expression model.

???displayArticle.pubmedLink??? 2431292
???displayArticle.pmcLink??? PMC367808
???displayArticle.link??? Mol Cell Biol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: gtf3a tbx2 trim9

References [+] :
Amaldi, On the duplication of ribosomal RNA cistrons in Chinese hamster cells. 1969, Pubmed