Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-21255
J Biol Chem 1994 May 13;26919:13736-9.
Show Gene links Show Anatomy links

Different homologous subunits of the amiloride-sensitive Na+ channel are differently regulated by aldosterone.

Lingueglia E , Renard S , Waldmann R , Voilley N , Champigny G , Plass H , Lazdunski M , Barbry P .


???displayArticle.abstract???
Long term regulation of the amiloride-sensitive Na+ channel activity by steroid hormones occurs via de novo protein synthesis. The messenger level of RCNaCh1, previously shown by expression cloning to be a component of this channel, was measured in colons from rats fed with a low sodium diet. After 1 week of this diet, the channel activity was increased in an all-or-none fashion, whereas the level of RCNaCh1 messenger remained constant. A cDNA coding for another subunit of the Na+ channel was obtained by polymerase chain reaction. The 650-amino acid protein, entitled RCNaCh2, is 58% homologous to RCNaCh1 and displays a similar structure. It had no intrinsic activity when expressed alone in Xenopus oocytes, but its co-expression with RCNaCh1 increased the channel activity 18 +/- 5-fold. The increase in messenger level for RCNaCh2 during the time course of the diet is likely to explain the positive regulation of the rat colon Na+ channel by steroids. Immunocytochemical localization of the RCNaCh1 subunit revealed an apical labeling in colon from sodium-depleted rats. No labeling was observed in colon from control animals. These results suggest that oligomerization is needed for the proper expression of RCNaCh1 at the cell surface.

???displayArticle.pubmedLink??? 8188647
???displayArticle.link??? J Biol Chem