Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
???displayArticle.abstract???
Progesterone-induced meiotic maturation of Xenopus oocytes requires the synthesis of new proteins, such as Mos and cyclin B. Synthesis of Mos is thought to be necessary and sufficient for meiotic maturation; however, it has recently been proposed that newly synthesized proteins binding to p34(cdc2) could be involved in a signaling pathway that triggers the activation of maturation-promoting factor. We focused our attention on cyclin B proteins because they are synthesized in response to progesterone, they bind to p34(cdc2), and their microinjection into resting oocytes induces meiotic maturation. We investigated cyclin B accumulation in response to progesterone in the absence of maturation-promoting factor-induced feedback. We report here that the cdk inhibitor p21(cip1), when microinjected into immature Xenopus oocytes, blocks germinal vesicle breakdown induced by progesterone, by maturation-promoting factor transfer, or by injection of okadaic acid. After microinjection of p21(cip1), progesterone fails to induce the activation of MAPK or p34(cdc2), and Mos does not accumulate. In contrast, the level of cyclin B1 increases normally in a manner dependent on down-regulation of cAMP-dependent protein kinase but independent of cap-ribose methylation of mRNA.
Anderson,
Processing of adenovirus 2-induced proteins.
1973, Pubmed
Anderson,
Processing of adenovirus 2-induced proteins.
1973,
Pubmed
Ballantyne,
A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation.
1997,
Pubmed
,
Xenbase
Barkoff,
Meiotic maturation in Xenopus requires polyadenylation of multiple mRNAs.
1998,
Pubmed
,
Xenbase
Bialojan,
Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics.
1988,
Pubmed
Chen,
The beta subunit of CKII negatively regulates Xenopus oocyte maturation.
1997,
Pubmed
,
Xenbase
Daar,
Inhibition of mos-induced oocyte maturation by protein kinase A.
1993,
Pubmed
,
Xenbase
Draetta,
Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF.
1989,
Pubmed
Dunphy,
The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis.
1988,
Pubmed
,
Xenbase
Faure,
Inactivation of protein kinase A is not required for c-mos translation during meiotic maturation of Xenopus oocytes.
1998,
Pubmed
,
Xenbase
Ferrell,
Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase.
1997,
Pubmed
,
Xenbase
Furuno,
Meiotic cell cycle in Xenopus oocytes is independent of cdk2 kinase.
1997,
Pubmed
,
Xenbase
Furuno,
Suppression of DNA replication via Mos function during meiotic divisions in Xenopus oocytes.
1994,
Pubmed
,
Xenbase
Gautier,
Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+.
1988,
Pubmed
,
Xenbase
Gautier,
Cyclin is a component of maturation-promoting factor from Xenopus.
1990,
Pubmed
,
Xenbase
Gautier,
Cyclin B in Xenopus oocytes: implications for the mechanism of pre-MPF activation.
1991,
Pubmed
,
Xenbase
Gerhart,
Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs.
1984,
Pubmed
,
Xenbase
Goris,
Okadaic acid, a specific protein phosphatase inhibitor, induces maturation and MPF formation in Xenopus laevis oocytes.
1989,
Pubmed
,
Xenbase
Gotoh,
Xenopus M phase MAP kinase: isolation of its cDNA and activation by MPF.
1991,
Pubmed
,
Xenbase
Gu,
Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit.
1993,
Pubmed
Huchon,
The pure inhibitor of cAMP-dependent protein kinase initiates Xenopus laevis meiotic maturation. A 4-step scheme for meiotic maturation.
1981,
Pubmed
,
Xenbase
Izumi,
Elimination of cdc2 phosphorylation sites in the cdc25 phosphatase blocks initiation of M-phase.
1993,
Pubmed
,
Xenbase
Jessus,
Levels of microtubules during the meiotic maturation of the Xenopus oocyte.
1987,
Pubmed
,
Xenbase
Jessus,
Tyrosine phosphorylation of p34cdc2 and p42 during meiotic maturation of Xenopus oocyte. Antagonistic action of okadaic acid and 6-DMAP.
1991,
Pubmed
,
Xenbase
Karaïskou,
MPF amplification in Xenopus oocyte extracts depends on a two-step activation of cdc25 phosphatase.
1998,
Pubmed
,
Xenbase
Kobayashi,
On the synthesis and destruction of A- and B-type cyclins during oogenesis and meiotic maturation in Xenopus laevis.
1991,
Pubmed
,
Xenbase
Kuge,
Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis.
1998,
Pubmed
,
Xenbase
Laemmli,
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
1970,
Pubmed
Lenormand,
Speedy: a novel cell cycle regulator of the G2/M transition.
1999,
Pubmed
,
Xenbase
Maller,
Early effect of progesterone on levels of cyclic adenosine 3':5'-monophosphate in Xenopus oocytes.
1979,
Pubmed
,
Xenbase
Maller,
Progesterone-stimulated meiotic cell division in Xenopus oocytes. Induction by regulatory subunit and inhibition by catalytic subunit of adenosine 3':5'-monophosphate-dependent protein kinase.
1977,
Pubmed
,
Xenbase
Masui,
Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes.
1971,
Pubmed
Masui,
Oocyte maturation.
1979,
Pubmed
Matsuda,
Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade.
1992,
Pubmed
,
Xenbase
Meijer,
Cyclin is a component of the sea urchin egg M-phase specific histone H1 kinase.
1989,
Pubmed
Nebreda,
Newly synthesized protein(s) must associate with p34cdc2 to activate MAP kinase and MPF during progesterone-induced maturation of Xenopus oocytes.
1995,
Pubmed
,
Xenbase
Nebreda,
The protein kinase mos activates MAP kinase kinase in vitro and stimulates the MAP kinase pathway in mammalian somatic cells in vivo.
1993,
Pubmed
,
Xenbase
Nishizawa,
Degradation of Mos by the N-terminal proline (Pro2)-dependent ubiquitin pathway on fertilization of Xenopus eggs: possible significance of natural selection for Pro2 in Mos.
1993,
Pubmed
,
Xenbase
Olmsted,
Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples.
1981,
Pubmed
Posada,
Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro.
1993,
Pubmed
,
Xenbase
Rempel,
Maternal Xenopus Cdk2-cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase.
1995,
Pubmed
,
Xenbase
Rime,
Characterization of MPF activation by okadaic acid in Xenopus oocyte.
1990,
Pubmed
,
Xenbase
Roy,
Mos proto-oncogene function during oocyte maturation in Xenopus.
1996,
Pubmed
,
Xenbase
Roy,
Activation of p34cdc2 kinase by cyclin A.
1991,
Pubmed
,
Xenbase
Sagata,
Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes.
1988,
Pubmed
,
Xenbase
Sagata,
The product of the mos proto-oncogene as a candidate "initiator" for oocyte maturation.
1989,
Pubmed
,
Xenbase
Shibuya,
Mos induces the in vitro activation of mitogen-activated protein kinases in lysates of frog oocytes and mammalian somatic cells.
1993,
Pubmed
,
Xenbase
Speaker,
Cyclic nucleotide fluctuations during steroid induced meiotic maturation of frog oocytes.
1977,
Pubmed
Su,
Cloning and characterization of the Xenopus cyclin-dependent kinase inhibitor p27XIC1.
1995,
Pubmed
,
Xenbase
Thibier,
In vivo regulation of cytostatic activity in Xenopus metaphase II-arrested oocytes.
1997,
Pubmed
,
Xenbase
Wasserman,
Effects of cyclohexamide on a cytoplasmic factor initiating meiotic naturation in Xenopus oocytes.
1975,
Pubmed
,
Xenbase
Xiong,
p21 is a universal inhibitor of cyclin kinases.
1993,
Pubmed
de Moor,
Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA.
1999,
Pubmed
,
Xenbase