Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-9699
Anesthesiology 2000 Apr 01;924:1144-53. doi: 10.1097/00000542-200004000-00033.
Show Gene links Show Anatomy links

Subunit-dependent inhibition of human neuronal nicotinic acetylcholine receptors and other ligand-gated ion channels by dissociative anesthetics ketamine and dizocilpine.

Yamakura T , Chavez-Noriega LE , Harris RA .


???displayArticle.abstract???
UNLABELLED: Background The neuronal mechanisms responsible for dissociative anesthesia remain controversial. N-methyl-D-aspartate (NMDA) receptors are inhibited by ketamine and related drugs at concentrations lower than those required for anesthetic effects. Thus, the authors studied whether ligand-gated ion channels other than NMDA receptors might display a sensitivity to ketamine and dizocilpine that is consistent with concentrations required for anesthesia. METHODS: Heteromeric human neuronal nicotinic acetylcholine receptors (hnAChR channels alpha2beta2, alpha2beta4, alpha3beta2, alpha3beta4, alpha4beta2 and alpha4beta4), 5-hydroxytryptamine3 (5-HT3), alpha1beta2gamma2S gamma-aminobutyric acid type A (GABAA) and alpha1 glycine receptors were expressed in Xenopus oocytes, and effects of ketamine and dizocilpine were studied using the two-electrode voltage-clamp technique. RESULTS: Both ketamine and dizocilpine inhibited hnAChRs in a noncompetitive and voltage-dependent manner. Receptors containing beta1 subunits were more sensitive to ketamine and dizocilpine than those containing beta2 subunits. The inhibitor concentration for half-maximal response (IC50) values for ketamine of hnAChRs composed of beta4 subunits were 9.5-29 microM, whereas those of beta2 subunits were 50-92 microM. Conversely, 5-HT3 receptors were inhibited only by concentrations of ketamine and dizocilpine higher than the anesthetic concentrations. This inhibition was mixed (competitive/noncompetitive). GABAA and glycine receptors were very resistant to dissociative anesthetics. CONCLUSIONS: Human nAChRs are inhibited by ketamine and dizocilpine at concentrations possibly achieved in vivo during anesthesia in a subunit-dependent manner, with beta subunits being more critical than alpha subunits. Conversely, 5-HT3, GABAA, and glycine receptors were relatively insensitive to dissociative anesthetics.

???displayArticle.pubmedLink??? 10754635
???displayArticle.link??? Anesthesiology
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: gabarap