Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

???searchArticles.header???



Filter by Date: Year(4-digits)   to 

???application.search.numResults???


Alphabetic Search:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

???manualAddArticle.find??? ???manualAddArticle.link.add???


???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ???pagination.result.next???

( ???images.icon???)
Search Results

Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos., Naert T, Tulkens D, Edwards NA, Carron M, Shaidani NI, Wlizla M, Boel A, Demuynck S, Horb ME, Coucke P, Willaert A, Zorn AM, Vleminckx K., Sci Rep. September 4, 2020; 10 (1): 14662.                      


RNA-Seq analysis on ets1 mutant embryos of Xenopus tropicalis identifies microseminoprotein beta gene 3 as an essential regulator of neural crest migration., Wang C, Qi X, Zhou X, Sun J, Cai D, Lu G, Chen X, Jiang Z, Yao YG, Chan WY, Zhao H., FASEB J. September 1, 2020; 34 (9): 12726-12738.


Evolution of the endothelin pathway drove neural crest cell diversification., Square TA, Jandzik D, Massey JL, Romášek M, Stein HP, Hansen AW, Purkayastha A, Cattell MV, Medeiros DM., Nature. September 1, 2020; 585 (7826): 563-568.


Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development., Farley-Barnes KI, Deniz E, Overton MM, Khokha MK, Baserga SJ., PLoS Genet. August 19, 2020; 16 (8): e1008967.                                    


CRISPR/Cas9 mediated mutation of the mtnr1a melatonin receptor gene causes rod photoreceptor degeneration in developing Xenopus tropicalis., Wiechmann AF, Martin TA, Horb ME., Sci Rep. August 13, 2020; 10 (1): 13757.                                  


Defective heart chamber growth and myofibrillogenesis after knockout of adprhl1 gene function by targeted disruption of the ancestral catalytic active site., Smith SJ, Towers N, Demetriou K, Mohun TJ., PLoS One. July 29, 2020; 15 (7): e0235433.                                            


Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome., Alharatani R, Ververi A, Beleza-Meireles A, Ji W, Mis E, Patterson QT, Griffin JN, Bhujel N, Chang CA, Dixit A, Konstantino M, Healy C, Hannan S, Neo N, Cash A, Li D, Bhoj E, Zackai EH, Cleaver R, Baralle D, McEntagart M, Newbury-Ecob R, Scott R, Hurst JA, Au PYB, Hosey MT, Khokha M, Marciano DK, Lakhani SA, Liu KJ., Hum Mol Genet. July 21, 2020; 29 (11): 1900-1921.                  


Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants., Wang S, Chen A, Xie K, Yang X, Luo Z, Chen J, Zeng D, Ren Y, Yang C, Wang L, Feng H, López-Arredondo DL, Herrera-Estrella LR, Xu G., Proc Natl Acad Sci U S A. July 14, 2020; 117 (28): 16649-16659.            


LaALMT1 mediates malate release from phosphorus-deficient white lupin root tips and metal root to shoot translocation., Zhou Y, Neuhäuser B, Neumann G, Ludewig U., Plant Cell Environ. July 1, 2020; 43 (7): 1691-1706.


A simple and practical workflow for genotyping of CRISPR-Cas9-based knockout phenotypes using multiplexed amplicon sequencing., Iida M, Suzuki M, Sakane Y, Nishide H, Uchiyama I, Yamamoto T, Suzuki KT, Fujii S., Genes Cells. July 1, 2020; 25 (7): 498-509.                    

???pagination.result.page??? ???pagination.result.prev??? 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ???pagination.result.next???