Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (762) Expression Attributions Wiki
XB-ANAT-18

Papers associated with hypophysis

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

In vivo induction of glial cell proliferation and axonal outgrowth and myelination by brain-derived neurotrophic factor., de Groot DM., Mol Endocrinol. November 1, 2006; 20 (11): 2987-98.


Paradoxical antagonism of PACAP receptor signaling by VIP in Xenopus oocytes via the type-C natriuretic peptide receptor., Lelièvre V., Cell Signal. November 1, 2006; 18 (11): 2013-21.


Shark rectal gland vasoactive intestinal peptide receptor: cloning, functional expression, and regulation of CFTR chloride channels., Bewley MS., Am J Physiol Regul Integr Comp Physiol. October 1, 2006; 291 (4): R1157-64.


Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland., Calle M., J Neuroendocrinol. October 1, 2006; 18 (10): 797-805.


Expression of sodium-iodide symporter mRNA in the thyroid gland of Xenopus laevis tadpoles: developmental expression, effects of antithyroidal compounds, and regulation by TSH., Opitz R., J Endocrinol. July 1, 2006; 190 (1): 157-70.


The effects of disruption of A kinase anchoring protein-protein kinase A association on protein kinase A signalling in neuroendocrine melanotroph cells of Xenopus laevis., Corstens GJ., J Neuroendocrinol. July 1, 2006; 18 (7): 477-83.


Evidence for the role of adenosine 5'-triphosphate-binding cassette (ABC)-A1 in the externalization of annexin 1 from pituitary folliculostellate cells and ABCA1-transfected cell models., Omer S., Endocrinology. July 1, 2006; 147 (7): 3219-27.


Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis., Calle M., Gen Comp Endocrinol. July 1, 2006; 147 (3): 237-46.        


Functional analysis of recombinant mutants of maxadilan with a PAC1 receptor-expressing melanophore cell line., Reddy VB., J Biol Chem. June 16, 2006; 281 (24): 16197-201.


Induction and specification of cranial placodes., Schlosser G., Dev Biol. June 15, 2006; 294 (2): 303-51.                


Control of muscle regeneration in the Xenopus tadpole tail by Pax7., Chen Y, Chen Y., Development. June 1, 2006; 133 (12): 2303-13.    


Brain-derived neurotrophic factor in the brain of Xenopus laevis may act as a pituitary neurohormone together with mesotocin., Calle M., J Neuroendocrinol. June 1, 2006; 18 (6): 454-65.


The coding sequence of amyloid-beta precursor protein APP contains a neural-specific promoter element., Collin RW., Dev Biol. May 4, 2006; 1087 (1): 41-51.            


Spatiotemporal sequence of appearance of NPFF-immunoreactive structures in the developing central nervous system of Xenopus laevis., López JM., Peptides. May 1, 2006; 27 (5): 1036-53.


Conserved regulatory elements establish the dynamic expression of Rpx/HesxI in early vertebrate development., Chou SJ., Dev Biol. April 15, 2006; 292 (2): 533-45.  


Evaluation of histological and molecular endpoints for enhanced detection of thyroid system disruption in Xenopus laevis tadpoles., Opitz R., Toxicol Sci. April 1, 2006; 90 (2): 337-48.


Luteinizing hormone, follicle stimulating hormone, and gonadotropin releasing hormone mRNA expression of Xenopus laevis in response to endocrine disrupting compounds affecting reproductive biology., Urbatzka R., Gen Comp Endocrinol. April 1, 2006; 146 (2): 119-25.        


GABAergic specification in the basal forebrain is controlled by the LIM-hd factor Lhx7., Bachy I., Dev Biol. March 15, 2006; 291 (2): 218-26.            


Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides., Boorse GC., Gen Comp Endocrinol. March 1, 2006; 146 (1): 9-18.      


Prion protein mRNA expression in Xenopus laevis: no induction during melanotrope cell activation., van Rosmalen JW., Dev Biol. February 23, 2006; 1075 (1): 20-5.        


Alpha-RgIA: a novel conotoxin that specifically and potently blocks the alpha9alpha10 nAChR., Ellison M., Biochemistry. February 7, 2006; 45 (5): 1511-7.


Cell type-specific transgene expression of the prion protein in Xenopus intermediate pituitary cells., van Rosmalen JW., FEBS J. February 1, 2006; 273 (4): 847-62.


Receptors for neuropeptide Y, gamma-aminobutyric acid and dopamine differentially regulate Ca2+ currents in Xenopus melanotrope cells via the G(i) protein beta/gamma-subunit., Zhang H., Gen Comp Endocrinol. January 15, 2006; 145 (2): 140-7.


Lens and retina formation require expression of Pitx3 in Xenopus pre-lens ectoderm., Khosrowshahian F., Dev Dyn. November 1, 2005; 234 (3): 577-89.        


The amyloid-beta precursor-like protein APLP2 and its relative APP are differentially regulated during neuroendocrine cell activation., Collin RW., Mol Cell Neurosci. November 1, 2005; 30 (3): 429-36.


Urocortins of the South African clawed frog, Xenopus laevis: conservation of structure and function in tetrapod evolution., Boorse GC., Endocrinology. November 1, 2005; 146 (11): 4851-60.


High-pressure freezing followed by cryosubstitution as a tool for preserving high-quality ultrastructure and immunoreactivity in the Xenopus laevis pituitary gland., Wang L., Brain Res Brain Res Protoc. September 1, 2005; 15 (3): 155-63.


Expression of neuroserpin is linked to neuroendocrine cell activation., de Groot DM., Endocrinology. September 1, 2005; 146 (9): 3791-9.


The role of deiodinases in amphibian metamorphosis., Brown DD., Thyroid. August 1, 2005; 15 (8): 815-21.


Biosynthesis and differential processing of two pools of amyloid-beta precursor protein in a physiologically inducible neuroendocrine cell., Collin RW., J Neurochem. August 1, 2005; 94 (4): 1015-24.


Matrix metalloproteinases are required for retinal ganglion cell axon guidance at select decision points., Hehr CL., Development. August 1, 2005; 132 (15): 3371-9.            


Aquaporin-3 expressed in the basolateral membrane of gill chloride cells in Mozambique tilapia Oreochromis mossambicus adapted to freshwater and seawater., Watanabe S., J Exp Biol. July 1, 2005; 208 (Pt 14): 2673-82.


Identification of a novel pharmacophore for peptide toxins interacting with K+ channels., Verdier L., J Biol Chem. June 3, 2005; 280 (22): 21246-55.


Transgenic frogs expressing the highly fluorescent protein venus under the control of a strong mammalian promoter suitable for monitoring living cells., Sakamaki K., Dev Dyn. June 1, 2005; 233 (2): 562-9.            


Cloning, characterization and expression of the D2 dopamine receptor from the tilapia pituitary., Levavi-Sivan B., Mol Cell Endocrinol. May 31, 2005; 236 (1-2): 17-30.


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Brain-derived neurotrophic factor in the hypothalamo-hypophyseal system of Xenopus laevis., Wang L., Ann N Y Acad Sci. April 1, 2005; 1040 512-4.


Calcium influx through voltage-operated calcium channels is required for proopiomelanocortin protein expression in Xenopus melanotropes., van den Hurk MJ., Ann N Y Acad Sci. April 1, 2005; 1040 494-7.


Analysis of Xenopus melanotrope cell size and POMC-gene expression., Corstens GJ., Ann N Y Acad Sci. April 1, 2005; 1040 269-72.


Expression of proopiomelanocortin and its cleavage enzyme genes in Rana esculenta and Xenopus laevis gonads., Carotti M., Ann N Y Acad Sci. April 1, 2005; 1040 261-3.


Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity., Roubos EW., Ann N Y Acad Sci. April 1, 2005; 1040 172-83.


In situ hybridization localization of TRH precursor and TRH receptor mRNAs in the brain and pituitary of Xenopus laevis., Galas L., Ann N Y Acad Sci. April 1, 2005; 1040 95-105.


A fast method to study the secretory activity of neuroendocrine cells at the ultrastructural level., Van Herp F., J Microsc. April 1, 2005; 218 (Pt 1): 79-83.


The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells., van den Hurk MJ., Neurosci Lett. March 29, 2005; 377 (2): 125-9.


Comparative analysis and expression of neuroserpin in Xenopus laevis., de Groot DM., Neuroendocrinology. January 1, 2005; 82 (1): 11-20.  


Xenopus laevis FoxE1 is primarily expressed in the developing pituitary and thyroid., El-Hodiri HM., Int J Dev Biol. January 1, 2005; 49 (7): 881-4.            


Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels., Zhang HY., J Neuroendocrinol. January 1, 2005; 17 (1): 1-9.


The pituitary-specific transcription factor, Pit-1, can direct changes in the chromatin structure of the prolactin promoter., Kievit P., Mol Endocrinol. January 1, 2005; 19 (1): 138-47.


The homeodomain-containing transcription factor X-nkx-5.1 inhibits expression of the homeobox gene Xanf-1 during the Xenopus laevis forebrain development., Bayramov AV., Mech Dev. December 1, 2004; 121 (12): 1425-41.  


Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis., Tonosaki Y., J Neuroendocrinol. November 1, 2004; 16 (11): 894-905.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???