Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (762) Expression Attributions Wiki
XB-ANAT-18

Papers associated with hypophysis

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Involvement of G protein betagamma-subunits in diverse signaling induced by G(i/o)-coupled receptors: study using the Xenopus oocyte expression system., Uezono Y., Am J Physiol Cell Physiol. October 1, 2004; 287 (4): C885-94.


Distribution of the mRNAs encoding the thyrotropin-releasing hormone (TRH) precursor and three TRH receptors in the brain and pituitary of Xenopus laevis: effect of background color adaptation on TRH and TRH receptor gene expression., Bidaud I., J Comp Neurol. September 6, 2004; 477 (1): 11-28.                      


Regulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: negative feedback is functional throughout metamorphosis., Manzon RG., J Endocrinol. August 1, 2004; 182 (2): 273-85.


Expression and hypophysiotropic actions of corticotropin-releasing factor in Xenopus laevis., Boorse GC., Gen Comp Endocrinol. July 1, 2004; 137 (3): 272-82.


Regulated gene expression of hyaluronan synthases during Xenopus laevis development., Nardini M., Gene Expr Patterns. May 1, 2004; 4 (3): 303-8.        


A cell-specific transgenic approach in Xenopus reveals the importance of a functional p24 system for a secretory cell., Bouw G., Mol Biol Cell. March 1, 2004; 15 (3): 1244-53.


A pituitary gene encodes a protein that produces differentiation of breast and prostate cancer cells., Platica M., Proc Natl Acad Sci U S A. February 10, 2004; 101 (6): 1560-5.


Expression of type II iodothyronine deiodinase marks the time that a tissue responds to thyroid hormone-induced metamorphosis in Xenopus laevis., Cai L., Dev Biol. February 1, 2004; 266 (1): 87-95.                


Secretogranin III binds to cholesterol in the secretory granule membrane as an adapter for chromogranin A., Hosaka M., J Biol Chem. January 30, 2004; 279 (5): 3627-34.


Dopamine D2-receptor activation differentially inhibits N- and R-type Ca2+ channels in Xenopus melanotrope cells., Zhang H., Neuroendocrinology. January 1, 2004; 80 (6): 368-78.


Differential distribution and regulation of expression of synaptosomal-associated protein of 25 kDa isoforms in the Xenopus pituitary gland and brain., Kolk SM., Neuroscience. January 1, 2004; 128 (3): 531-43.


Activity-dependent dynamics of coexisting brain-derived neurotrophic factor, pro-opiomelanocortin and alpha-melanophore-stimulating hormone in melanotrope cells of Xenopus laevis., Wang LC., J Neuroendocrinol. January 1, 2004; 16 (1): 19-25.


Identification of BOIP, a novel cDNA highly expressed during spermatogenesis that encodes a protein interacting with the orange domain of the hairy-related transcription factor HRT1/Hey1 in Xenopus and mouse., Van Wayenbergh R., Dev Dyn. December 1, 2003; 228 (4): 716-25.      


Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features., Roessler E., Proc Natl Acad Sci U S A. November 11, 2003; 100 (23): 13424-9.          


Role of cortical filamentous actin in the melanotrope cell of Xenopus laevis., Corstens GJ., Gen Comp Endocrinol. November 1, 2003; 134 (2): 95-102.


Xenopus laevis CB1 cannabinoid receptor: molecular cloning and mRNA distribution in the central nervous system., Cottone E., J Comp Neurol. September 29, 2003; 464 (4): 487-96.        


Expression and characterization of the extracellular Ca(2+)-sensing receptor in melanotrope cells of Xenopus laevis., van den Hurk MJ., Endocrinology. June 1, 2003; 144 (6): 2524-33.


Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function., Jenks BG., Gen Comp Endocrinol. May 1, 2003; 131 (3): 209-19.


The left-right determinant Inversin is a component of node monocilia and other 9+0 cilia., Watanabe D., Development. May 1, 2003; 130 (9): 1725-34.


Co-localization of mesotocin and opsin immunoreactivity in the hypothalamic preoptic nucleus of Xenopus laevis., Alvarez-Viejo M., Brain Res. April 18, 2003; 969 (1-2): 36-43.                


Direct cAMP signaling through G-protein-coupled receptors mediates growth cone attraction induced by pituitary adenylate cyclase-activating polypeptide., Guirland C., J Neurosci. March 15, 2003; 23 (6): 2274-83.


Microtransplantation of membranes from cultured cells to Xenopus oocytes: a method to study neurotransmitter receptors embedded in native lipids., Palma E., Proc Natl Acad Sci U S A. March 4, 2003; 100 (5): 2896-900.


Electrical membrane activity and intracellular calcium buffering control exocytosis efficiency in Xenopus melanotrope cells., Scheenen WJ., Neuroendocrinology. March 1, 2003; 77 (3): 153-61.


Differential distribution of melatonin receptors in the pituitary gland of Xenopus laevis., Wiechmann AF., Anat Embryol (Berl). March 1, 2003; 206 (4): 291-9.


Regulation of the rat follicle-stimulating hormone beta-subunit promoter by activin., Suszko MI., Mol Endocrinol. March 1, 2003; 17 (3): 318-32.


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Comparative analysis of neuropeptide FF-like immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians., Crespo M., J Chem Neuroanat. January 1, 2003; 25 (1): 53-71.


Maxadilan activates PAC1 receptors expressed in Xenopus laevis xelanophores., Pereira P., Pigment Cell Res. December 1, 2002; 15 (6): 461-6.


Comparative distributions of pituitary adenylyl cyclase-activating polypeptide and its selective type I receptor mRNA in the frog (Xenopus laevis) brain., Hu Z., Regul Pept. November 15, 2002; 109 (1-3): 15-26.


Automated nanoflow liquid chromatography-tandem mass spectrometry for a differential display proteomic study on Xenopus laevis neuroendocrine cells., Devreese B., J Chromatogr A. November 8, 2002; 976 (1-2): 113-21.


Demonstration of postsynaptic receptor plasticity in an amphibian neuroendocrine interface., Jenks BG., J Neuroendocrinol. November 1, 2002; 14 (11): 843-5.


Corticotropin-releasing hormone-binding protein: biochemistry and function from fishes to mammals., Seasholtz AF., J Endocrinol. October 1, 2002; 175 (1): 89-97.


Sauvagine regulates Ca2+ oscillations and electrical membrane activity of melanotrope cells of Xenopus laevis., Cornelisse LN., J Neuroendocrinol. October 1, 2002; 14 (10): 778-87.


Immunocytochemical detection of leptin in non-mammalian vertebrate stomach., Muruzábal FJ., Gen Comp Endocrinol. September 1, 2002; 128 (2): 149-52.  


Developmental changes in interrenal responsiveness in anuran amphibians., Glennemeier KA., Integr Comp Biol. July 1, 2002; 42 (3): 565-73.


TRH signal transduction in melanotrope cells of Xenopus laevis., Lieste JR., Gen Comp Endocrinol. June 1, 2002; 127 (1): 80-8.


New aspects of signal transduction in the Xenopus laevis melanotrope cell., Roubos EW., Gen Comp Endocrinol. May 1, 2002; 126 (3): 255-60.


Regulation of neurons in the suprachiasmatic nucleus of Xenopus laevis., Kramer BM., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 269-74.


Multiple control and dynamic response of the Xenopus melanotrope cell., Kolk SM., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 257-68.


Transgene-driven protein expression specific to the intermediate pituitary melanotrope cells of Xenopus laevis., Jansen EJ., FEBS Lett. April 10, 2002; 516 (1-3): 201-7.


Environmental estrogens and reproductive biology in amphibians., Mosconi G., Gen Comp Endocrinol. April 1, 2002; 126 (2): 125-9.


The gonadotrophin-releasing hormone receptor: signalling, cycling and desensitisation., McArdle CA., Arch Physiol Biochem. April 1, 2002; 110 (1-2): 113-22.


Signalling, cycling and desensitisation of gonadotrophin-releasing hormone receptors., McArdle CA., J Endocrinol. April 1, 2002; 173 (1): 1-11.


Distribution and effects of PACAP, VIP, nitric oxide and GABA in the gut of the African clawed frog Xenopus laevis., Olsson C., J Exp Biol. April 1, 2002; 205 (Pt 8): 1123-34.


Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis., Kramer BM., Endocrinology. April 1, 2002; 143 (4): 1337-45.


Cell-type-specific and selectively induced expression of members of the p24 family of putative cargo receptors., Rötter J., J Cell Sci. March 1, 2002; 115 (Pt 5): 1049-58.  


[Cardiotoxicity of lindane, a gamma isomer of hexachlorocyclohexane]., Sauviat MP., J Soc Biol. January 1, 2002; 196 (4): 339-48.


Cell type specific expression of secretory TFF peptides: colocalization with mucins and synthesis in the brain., Hoffmann W., Int Rev Cytol. January 1, 2002; 213 147-81.


Relationships between CB1 cannabinoid receptors and pituitary endocrine cells in Xenopus laevis: an immunohistochemical study., Cesa R., Gen Comp Endocrinol. January 1, 2002; 125 (1): 17-24.    


A novel human nicotinic receptor subunit, alpha10, that confers functionality to the alpha9-subunit., Sgard F., Mol Pharmacol. January 1, 2002; 61 (1): 150-9.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???