Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (385) Expression Attributions Wiki
XB-ANAT-298

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos., Salic AN., Development. December 1, 1997; 124 (23): 4739-48.              


Surface mesoderm in Xenopus: a revision of the stage 10 fate map., Minsuk SB., Dev Genes Evol. December 1, 1997; 207 (6): 389-401.


Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos., Elul T., Dev Biol. November 15, 1997; 191 (2): 243-58.


Epithelial cell wedging and neural trough formation are induced planarly in Xenopus, without persistent vertical interactions with mesoderm., Poznanski A., Dev Biol. September 15, 1997; 189 (2): 256-69.


Gli1 is a target of Sonic hedgehog that induces ventral neural tube development., Lee J., Development. July 1, 1997; 124 (13): 2537-52.                  


The contribution of protein kinases to plastic events in the superior colliculus., McCrossan D., Prog Neuropsychopharmacol Biol Psychiatry. April 1, 1997; 21 (3): 487-505.


Spatially distinct domains of cell behavior in the zebrafish organizer region., D'Amico LA., Biochem Cell Biol. January 1, 1997; 75 (5): 563-77.


Expression pattern of an axolotl floor plate-specific fork head gene reflects early developmental differences between frogs and salamanders., Whiteley M., Dev Genet. January 1, 1997; 20 (2): 145-51.


Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3., Hansen CS., Development. January 1, 1997; 124 (2): 483-92.


Involvement of Livertine, a hepatocyte growth factor family member, in neural morphogenesis., Ruiz i Altaba A., Mech Dev. December 1, 1996; 60 (2): 207-20.          


Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation., Lustig KD., Development. December 1, 1996; 122 (12): 4001-12.                  


Localization of nitric oxide synthase in the brain of the frog, Xenopus laevis., Brüning G., Dev Biol. November 25, 1996; 741 (1-2): 331-43.                


Analysis of Dishevelled signalling pathways during Xenopus development., Sokol SY., Curr Biol. November 1, 1996; 6 (11): 1456-67.                  


Integrin alpha 6 expression is required for early nervous system development in Xenopus laevis., Lallier TE., Development. August 1, 1996; 122 (8): 2539-54.                                  


The expression of Brachyury (T) during gastrulation in the marsupial frog Gastrotheca riobambae., del Pino EM., Dev Biol. July 10, 1996; 177 (1): 64-72.


Overexpression of the Xenopus Xl-fli gene during early embryogenesis leads to anomalies in head and heart development and erythroid differentiation., Remy P., Int J Dev Biol. June 1, 1996; 40 (3): 577-89.                          


Primary sequence and developmental expression pattern of mRNAs and protein for an alpha1 subunit of the sodium pump cloned from the neural plate of Xenopus laevis., Davies CS., Dev Biol. March 15, 1996; 174 (2): 431-47.                  


Control of ion flux and selectivity by negatively charged residues in the outer mouth of rat sodium channels., Chiamvimonvat N., J Physiol. February 15, 1996; 491 ( Pt 1) 51-9.


Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney., You G., J Biol Chem. December 8, 1995; 270 (49): 29365-71.


Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis., Vodicka MA., Development. November 1, 1995; 121 (11): 3505-18.                  


Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis., Ekker SC., Development. August 1, 1995; 121 (8): 2337-47.        


The role of vertical and planar signals during the early steps of neural induction., Grunz H., Int J Dev Biol. June 1, 1995; 39 (3): 539-43.  


Induction of the prospective neural crest of Xenopus., Mayor R., Development. March 1, 1995; 121 (3): 767-77.                  


Beta-catenin localization during Xenopus embryogenesis: accumulation at tissue and somite boundaries., Fagotto F., Development. December 1, 1994; 120 (12): 3667-79.                  


Superficial cells in the early gastrula of Rana pipiens contribute to mesodermal derivatives., Delarue M., Dev Biol. October 1, 1994; 165 (2): 702-15.


Ultrastructure and GABA immunoreactivity in layers 8 and 9 of the optic tectum of Xenopus laevis., Rybicka KK., Eur J Neurosci. October 1, 1994; 6 (10): 1567-82.                    


The cleavage stage origin of Spemann's Organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus., Bauer DV., Development. May 1, 1994; 120 (5): 1179-89.              


Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity., Hemmati-Brivanlou A., Cell. April 22, 1994; 77 (2): 283-95.                    


Suramin and heparin: aspecific inhibitors of mesoderm induction in the Xenopus laevis embryo., Cardellini P., Mech Dev. January 1, 1994; 45 (1): 73-87.


Primary sensory neurons express a Shaker-like potassium channel gene., Ribera AB., J Neurosci. November 1, 1993; 13 (11): 4988-96.                


Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression., Mayor R., Development. November 1, 1993; 119 (3): 661-71.                  


Expression of Xenopus snail in mesoderm and prospective neural fold ectoderm., Essex LJ., Dev Dyn. October 1, 1993; 198 (2): 108-22.              


Localization of NaPi-1, a Na-Pi cotransporter, in rabbit kidney proximal tubules. I. mRNA localization by reverse transcription/polymerase chain reaction., Custer M., Pflugers Arch. August 1, 1993; 424 (3-4): 203-9.


XLPOU-60, a Xenopus POU-domain mRNA, is oocyte-specific from very early stages of oogenesis, and localised to presumptive mesoderm and ectoderm in the blastula., Whitfield T., Dev Biol. February 1, 1993; 155 (2): 361-70.                  


The epithelium of the dorsal marginal zone of Xenopus has organizer properties., Shih J., Development. December 1, 1992; 116 (4): 887-99.


Evidence that the deep keratin filament systems of the Xenopus embryo act to ensure normal gastrulation., Klymkowsky MW., Proc Natl Acad Sci U S A. September 15, 1992; 89 (18): 8736-40.


Function of maternal cytokeratin in Xenopus development., Torpey N., Nature. June 4, 1992; 357 (6377): 413-5.


Immunohistochemical localization of hyaluronan synthase in cornea and conjunctive of cynomolgus monkey., Rittig M., Exp Eye Res. March 1, 1992; 54 (3): 455-60.


The role of intermediate filaments in early Xenopus development studied by antisense depletion of maternal mRNA., Heasman J., Dev Suppl. January 1, 1992; 119-25.


Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis., Lázár GY., J Comp Neurol. August 1, 1991; 310 (1): 45-67.                                                              


Progressively restricted expression of a new homeobox-containing gene during Xenopus laevis embryogenesis., Su MW., Development. April 1, 1991; 111 (4): 1179-87.          


Localization of calmodulin in epidermis and skin glands: a comparative immunohistological investigation in different vertebrate species., Wollina U., Acta Histochem. January 1, 1991; 90 (2): 135-40.


A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX., Couturier S., Neuron. December 1, 1990; 5 (6): 847-56.


Homoiogenetic Neural Inducing Activity of the Presumptive Neural Plate of Xenopus Laevis: (Xenopus laevis/neural induction/homoiogenetic induction/heteroplastic transplantation/Xenopus borealis)., Grunz H., Dev Growth Differ. December 1, 1990; 32 (6): 583-589.


The expression of phosphorylated and non-phosphorylated forms of MAP5 in the amphibian CNS., Viereck C., Dev Biol. February 5, 1990; 508 (2): 257-64.              


Characterization and Function of Spinal Excitatory Interneurons with Commissural Projections in Xenopus laevis embryos., Roberts A., Eur J Neurosci. January 1, 1990; 2 (12): 1051-1062.


Regeneration of optic fibres through the chiasma in Xenopus laevis tadpoles., Gaze RM., Anat Embryol (Berl). January 1, 1990; 182 (2): 181-94.


Developmental expression of regionally specific cell surface antigens in the Xenopus gastrula., Litvin J., Dev Genet. January 1, 1990; 11 (1): 110-22.


The development of the Xenopus retinofugal pathway: optic fibers join a pre-existing tract., Easter SS., Development. November 1, 1989; 107 (3): 553-73.


An aberrant retinal pathway and visual centers in Xenopus tadpoles share a common cell surface molecule, A5 antigen., Fujisawa H., Dev Biol. October 1, 1989; 135 (2): 231-40.                

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 ???pagination.result.next???