Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (649) Expression Attributions Wiki
XB-ANAT-299

Papers associated with deep

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Molecular mechanism of use-dependent calcium channel block by phenylalkylamines: role of inactivation., Hering S., Proc Natl Acad Sci U S A. November 25, 1997; 94 (24): 13323-8.


Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos., Elul T., Dev Biol. November 15, 1997; 191 (2): 243-58.


Molecular basis for different pore properties of potassium channels from the rat brain Kv1 gene family., Gòmez-Hernandez JM., Pflugers Arch. November 1, 1997; 434 (6): 661-8.


Animal and vegetal pole cells of early Xenopus embryos respond differently to maternal dorsal determinants: implications for the patterning of the organiser., Darras S., Development. November 1, 1997; 124 (21): 4275-86.            


Anf: a novel class of vertebrate homeobox genes expressed at the anterior end of the main embryonic axis., Kazanskaya OV., Gene. October 24, 1997; 200 (1-2): 25-34.    


Epithelial cell wedging and neural trough formation are induced planarly in Xenopus, without persistent vertical interactions with mesoderm., Poznanski A., Dev Biol. September 15, 1997; 189 (2): 256-69.


Determinants of apamin and d-tubocurarine block in SK potassium channels., Ishii TM., J Biol Chem. September 12, 1997; 272 (37): 23195-200.


Ets-1 and Ets-2 proto-oncogenes exhibit differential and restricted expression patterns during Xenopus laevis oogenesis and embryogenesis., Meyer D., Int J Dev Biol. August 1, 1997; 41 (4): 607-20.                                      


The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells., Smith A., Curr Biol. August 1, 1997; 7 (8): 561-70.            


Gli1 is a target of Sonic hedgehog that induces ventral neural tube development., Lee J., Development. July 1, 1997; 124 (13): 2537-52.                  


Xnr4: a Xenopus nodal-related gene expressed in the Spemann organizer., Joseph EM., Dev Biol. April 15, 1997; 184 (2): 367-72.        


Developmental expression of the inositol 1,4,5-trisphosphate receptor and structural changes in the endoplasmic reticulum during oogenesis and meiotic maturation of Xenopus laevis., Kume S., Dev Biol. February 15, 1997; 182 (2): 228-39.              


Spinal ascending pathways in amphibians: cells of origin and main targets., Muñoz A., J Comp Neurol. February 10, 1997; 378 (2): 205-28.


Microtubule disruption reveals that Spemann's organizer is subdivided into two domains by the vegetal alignment zone., Lane MC., Development. February 1, 1997; 124 (4): 895-906.                


Xefiltin, a new low molecular weight neuronal intermediate filament protein of Xenopus laevis, shares sequence features with goldfish gefiltin and mammalian alpha-internexin and differs in expression from XNIF and NF-L., Zhao Y., J Comp Neurol. January 20, 1997; 377 (3): 351-64.            


Spatially distinct domains of cell behavior in the zebrafish organizer region., D'Amico LA., Biochem Cell Biol. January 1, 1997; 75 (5): 563-77.


Expression pattern of an axolotl floor plate-specific fork head gene reflects early developmental differences between frogs and salamanders., Whiteley M., Dev Genet. January 1, 1997; 20 (2): 145-51.


Combinatorial signalling by Xwnt-11 and Xnr3 in the organizer epithelium., Glinka A., Mech Dev. December 1, 1996; 60 (2): 221-31.          


Involvement of Livertine, a hepatocyte growth factor family member, in neural morphogenesis., Ruiz i Altaba A., Mech Dev. December 1, 1996; 60 (2): 207-20.          


A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm., Papalopulu N., Development. November 1, 1996; 122 (11): 3409-18.            


Polyamine spider toxins and mammalian N-methyl-D-aspartate receptors. Structural basis for channel blocking and binding of argiotoxin636., Raditsch M., Eur J Biochem. September 1, 1996; 240 (2): 416-26.


Involvement of protein kinase C in gamma-aminobutyric acid release from Xenopus oocytes injected with rat brain mRNA., Kan S., J Neurochem. August 1, 1996; 67 (2): 868-71.


A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway., Baker JC., Genes Dev. August 1, 1996; 10 (15): 1880-9.


Cytoskeleton-membrane interactions at the postsynaptic density of Xenopus neuromuscular junctions., Luther PW., J Neurocytol. July 1, 1996; 25 (7): 417-27.


Egg jelly layers of Xenopus laevis are unique in ultrastructure and sugar distribution., Bonnell BS., Mol Reprod Dev. June 1, 1996; 44 (2): 212-20.


Confocal microscopy analysis of living Xenopus eggs and the mechanism of cortical rotation., Larabell CA., Development. April 1, 1996; 122 (4): 1281-9.                  


Primary sequence and developmental expression pattern of mRNAs and protein for an alpha1 subunit of the sodium pump cloned from the neural plate of Xenopus laevis., Davies CS., Dev Biol. March 15, 1996; 174 (2): 431-47.                  


Dorsal mesoderm has a dual origin and forms by a novel mechanism in Hymenochirus, a relative of Xenopus., Minsuk SB., Dev Biol. February 25, 1996; 174 (1): 92-103.


Xenopus laevis egg jelly coats consist of small diffusible proteins bound to a complex system of structurally stable networks composed of high-molecular-weight glycoconjugates., Bonnell BS., Dev Biol. February 25, 1996; 174 (1): 32-42.


Immunodetection of cytoskeletal structures and the Eg5 motor protein on deep-etch replicas of Xenopus egg cortices isolated during the cortical rotation., Chang P., Biol Cell. January 1, 1996; 88 (3): 89-98.


Microfilament-membrane interactions in Xenopus myocytes., Samuelsson SJ., Cell Motil Cytoskeleton. January 1, 1996; 35 (1): 68-80.


Anuran dorsal column nucleus: organization, immunohistochemical characterization, and fiber connections in Rana perezi and Xenopus laevis., Muñoz A., J Comp Neurol. December 11, 1995; 363 (2): 197-220.


Expression of L-type Ca2+ channel during early embryogenesis in Xenopus laevis., Drean G., Int J Dev Biol. December 1, 1995; 39 (6): 1027-32.          


The homeobox-containing gene XANF-1 may control development of the Spemann organizer., Zaraisky AG., Development. November 1, 1995; 121 (11): 3839-47.        


Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis., Vodicka MA., Development. November 1, 1995; 121 (11): 3505-18.                  


eFGF is expressed in the dorsal midline of Xenopus laevis., Isaacs HV., Int J Dev Biol. August 1, 1995; 39 (4): 575-9.  


Molecular and functional characterization of recombinant human metabotropic glutamate receptor subtype 5., Daggett LP., Neuropharmacology. August 1, 1995; 34 (8): 871-86.


Multiple residues specify external tetraethylammonium blockade in voltage-gated potassium channels., Pascual JM., Biophys J. August 1, 1995; 69 (2): 428-34.


Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis., Ekker SC., Development. August 1, 1995; 121 (8): 2337-47.        


A nodal-related gene defines a physical and functional domain within the Spemann organizer., Smith WC., Cell. July 14, 1995; 82 (1): 37-46.              


Localized calcium signals in early zebrafish development., Reinhard E., Dev Biol. July 1, 1995; 170 (1): 50-61.


Stages of embryonic development of the zebrafish., Kimmel CB., Dev Dyn. July 1, 1995; 203 (3): 253-310.


The potassium channel subunit KV3.1b is localized to somatic and axonal membranes of specific populations of CNS neurons., Weiser M., J Neurosci. June 1, 1995; 15 (6): 4298-314.


Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle., Blitz IL., Development. April 1, 1995; 121 (4): 993-1004.              


Disruption of intermediate filament organization leads to structural defects at the intersomite junction in Xenopus myotomal muscle., Cary RB., Development. April 1, 1995; 121 (4): 1041-52.              


Induction of the prospective neural crest of Xenopus., Mayor R., Development. March 1, 1995; 121 (3): 767-77.                  


Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3., Pierce SB., Development. March 1, 1995; 121 (3): 755-65.              


The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions., Pannese M., Development. March 1, 1995; 121 (3): 707-20.                      


An inductive role for the endoderm in Xenopus cardiogenesis., Nascone N., Development. February 1, 1995; 121 (2): 515-23.


Coupling between charge movement and pore opening in voltage dependent potassium channels., Stefani E., Medicina (B Aires). January 1, 1995; 55 (5 Pt 2): 591-9.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???