Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (7748) Expression Attributions Wiki
XB-ANAT-11

Papers associated with brain (and snai1)

Limit to papers also referencing gene:
Show all brain papers
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2

Sort Newest To Oldest Sort Oldest To Newest

The transcription factor Sox9 is required for cranial neural crest development in Xenopus., Spokony RF., Development. January 1, 2002; 129 (2): 421-32.        


Tumorhead, a Xenopus gene product that inhibits neural differentiation through regulation of proliferation., Wu CF., Development. September 1, 2001; 128 (17): 3381-93.                


Xenopus cadherin-11 restrains cranial neural crest migration and influences neural crest specification., Borchers A., Development. August 1, 2001; 128 (16): 3049-60.                      


[Cellular mechanism of seizure discharge and its normalization by a herbal mixture prescription "saikokeishito-ka-shakuyaku" (SK)]., Sugaya A., Yakugaku Zasshi. May 1, 2001; 121 (5): 295-317.


Overexpression of the transcriptional repressor FoxD3 prevents neural crest formation in Xenopus embryos., Pohl BS., Mech Dev. May 1, 2001; 103 (1-2): 93-106.  


A novel member of the Xenopus Zic family, Zic5, mediates neural crest development., Nakata K., Mech Dev. December 1, 2000; 99 (1-2): 83-91.      


Relationship between gene expression domains of Xsnail, Xslug, and Xtwist and cell movement in the prospective neural crest of Xenopus., Linker C., Dev Biol. August 15, 2000; 224 (2): 215-25.              


Genomic organization, expression, and chromosome location of the human SNAIL gene (SNAI1) and a related processed pseudogene (SNAI1P)., Paznekas WA., Genomics. November 15, 1999; 62 (1): 42-9.


X-twi is expressed prior to gastrulation in presumptive neurectodermal and mesodermal cells in dorsalized and ventralized Xenopus laevis embryos., Stoetzel C., Int J Dev Biol. September 1, 1998; 42 (6): 747-56.                


Neural crest induction in Xenopus: evidence for a two-signal model., LaBonne C., Development. July 1, 1998; 125 (13): 2403-14.                  


MicroO-conotoxin MrVIA inhibits mammalian sodium channels, but not through site I., Terlau H., J Neurophysiol. September 1, 1996; 76 (3): 1423-9.


Induction of the prospective neural crest of Xenopus., Mayor R., Development. March 1, 1995; 121 (3): 767-77.                  


Expression of Xenopus snail in mesoderm and prospective neural fold ectoderm., Essex LJ., Dev Dyn. October 1, 1993; 198 (2): 108-22.              


Some polypeptides in the nervous system of the marine worm, Nereis diversicolor, are related to the sodium influx stimulating peptide of the pulmonate freshwater snail, Lymnaea stagnalis., Dugimont T., Gen Comp Endocrinol. July 1, 1992; 87 (1): 120-6.


Radioimmunoassay of methionine(5)-enkephalin sulphoxide: phylogenetic and anatomical distribution., King JA., Peptides. January 1, 1980; 1 (3): 211-6.

???pagination.result.page??? ???pagination.result.prev??? 1 2