Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (7748) Expression Attributions Wiki
XB-ANAT-11

Papers associated with brain (and pomc)

Limit to papers also referencing gene:
Show all brain papers
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Evidence for the role of adenosine 5'-triphosphate-binding cassette (ABC)-A1 in the externalization of annexin 1 from pituitary folliculostellate cells and ABCA1-transfected cell models., Omer S., Endocrinology. July 1, 2006; 147 (7): 3219-27.


Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis., Calle M., Gen Comp Endocrinol. July 1, 2006; 147 (3): 237-46.        


The coding sequence of amyloid-beta precursor protein APP contains a neural-specific promoter element., Collin RW., Dev Biol. May 4, 2006; 1087 (1): 41-51.            


Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides., Boorse GC., Gen Comp Endocrinol. March 1, 2006; 146 (1): 9-18.      


Prion protein mRNA expression in Xenopus laevis: no induction during melanotrope cell activation., van Rosmalen JW., Dev Biol. February 23, 2006; 1075 (1): 20-5.        


Cell type-specific transgene expression of the prion protein in Xenopus intermediate pituitary cells., van Rosmalen JW., FEBS J. February 1, 2006; 273 (4): 847-62.


Urocortins of the South African clawed frog, Xenopus laevis: conservation of structure and function in tetrapod evolution., Boorse GC., Endocrinology. November 1, 2005; 146 (11): 4851-60.


High-pressure freezing followed by cryosubstitution as a tool for preserving high-quality ultrastructure and immunoreactivity in the Xenopus laevis pituitary gland., Wang L., Brain Res Brain Res Protoc. September 1, 2005; 15 (3): 155-63.


Expression of neuroserpin is linked to neuroendocrine cell activation., de Groot DM., Endocrinology. September 1, 2005; 146 (9): 3791-9.


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Expression of proopiomelanocortin and its cleavage enzyme genes in Rana esculenta and Xenopus laevis gonads., Carotti M., Ann N Y Acad Sci. April 1, 2005; 1040 261-3.


Opioid peptides, CRF, and urocortin in cerebrospinal fluid-contacting neurons in Xenopus laevis., Calle M., Ann N Y Acad Sci. April 1, 2005; 1040 249-52.


Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity., Roubos EW., Ann N Y Acad Sci. April 1, 2005; 1040 172-83.


In situ hybridization localization of TRH precursor and TRH receptor mRNAs in the brain and pituitary of Xenopus laevis., Galas L., Ann N Y Acad Sci. April 1, 2005; 1040 95-105.


A fast method to study the secretory activity of neuroendocrine cells at the ultrastructural level., Van Herp F., J Microsc. April 1, 2005; 218 (Pt 1): 79-83.


The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells., van den Hurk MJ., Neurosci Lett. March 29, 2005; 377 (2): 125-9.


Xenopus laevis FoxE1 is primarily expressed in the developing pituitary and thyroid., El-Hodiri HM., Int J Dev Biol. January 1, 2005; 49 (7): 881-4.            


Regulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: negative feedback is functional throughout metamorphosis., Manzon RG., J Endocrinol. August 1, 2004; 182 (2): 273-85.


Cloning and tissue distribution of the chicken type 2 corticotropin-releasing hormone receptor., de Groef B., Gen Comp Endocrinol. August 1, 2004; 138 (1): 89-95.


Expression and hypophysiotropic actions of corticotropin-releasing factor in Xenopus laevis., Boorse GC., Gen Comp Endocrinol. July 1, 2004; 137 (3): 272-82.


Roles of corticotropin-releasing factor, neuropeptide Y and corticosterone in the regulation of food intake in Xenopus laevis., Crespi EJ., J Neuroendocrinol. March 1, 2004; 16 (3): 279-88.


A cell-specific transgenic approach in Xenopus reveals the importance of a functional p24 system for a secretory cell., Bouw G., Mol Biol Cell. March 1, 2004; 15 (3): 1244-53.


Expression of type II iodothyronine deiodinase marks the time that a tissue responds to thyroid hormone-induced metamorphosis in Xenopus laevis., Cai L., Dev Biol. February 1, 2004; 266 (1): 87-95.                


Activity-dependent dynamics of coexisting brain-derived neurotrophic factor, pro-opiomelanocortin and alpha-melanophore-stimulating hormone in melanotrope cells of Xenopus laevis., Wang LC., J Neuroendocrinol. January 1, 2004; 16 (1): 19-25.


Expression and characterization of the extracellular Ca(2+)-sensing receptor in melanotrope cells of Xenopus laevis., van den Hurk MJ., Endocrinology. June 1, 2003; 144 (6): 2524-33.


Differential distribution of melatonin receptors in the pituitary gland of Xenopus laevis., Wiechmann AF., Anat Embryol (Berl). March 1, 2003; 206 (4): 291-9.


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Corticotropin-releasing hormone-binding protein: biochemistry and function from fishes to mammals., Seasholtz AF., J Endocrinol. October 1, 2002; 175 (1): 89-97.


Characterization and functional expression of cDNAs encoding thyrotropin-releasing hormone receptor from Xenopus laevis., Bidaud I., Eur J Biochem. September 1, 2002; 269 (18): 4566-76.


Developmental changes in interrenal responsiveness in anuran amphibians., Glennemeier KA., Integr Comp Biol. July 1, 2002; 42 (3): 565-73.


Multiple control and dynamic response of the Xenopus melanotrope cell., Kolk SM., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 257-68.


Transgene-driven protein expression specific to the intermediate pituitary melanotrope cells of Xenopus laevis., Jansen EJ., FEBS Lett. April 10, 2002; 516 (1-3): 201-7.


Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis., Kramer BM., Endocrinology. April 1, 2002; 143 (4): 1337-45.


Cell-type-specific and selectively induced expression of members of the p24 family of putative cargo receptors., Rötter J., J Cell Sci. March 1, 2002; 115 (Pt 5): 1049-58.  


Relationships between CB1 cannabinoid receptors and pituitary endocrine cells in Xenopus laevis: an immunohistochemical study., Cesa R., Gen Comp Endocrinol. January 1, 2002; 125 (1): 17-24.    


Dynamics and plasticity of peptidergic control centres in the retino-brain-pituitary system of Xenopus laevis., Kramer BM., Microsc Res Tech. August 1, 2001; 54 (3): 188-99.


Timing of metamorphosis and the onset of the negative feedback loop between the thyroid gland and the pituitary is controlled by type II iodothyronine deiodinase in Xenopus laevis., Huang H., Proc Natl Acad Sci U S A. June 19, 2001; 98 (13): 7348-53.          


Biochemical characterization and expression analysis of the Xenopus laevis corticotropin-releasing hormone binding protein., Valverde RA., Mol Cell Endocrinol. February 28, 2001; 173 (1-2): 29-40.


Characterization of three corticotropin-releasing factor receptors in catfish: a novel third receptor is predominantly expressed in pituitary and urophysis., Arai M., Endocrinology. January 1, 2001; 142 (1): 446-54.


125I-Antisauvagine-30: a novel and specific high-affinity radioligand for the characterization of corticotropin-releasing factor type 2 receptors., Higelin J., Neuropharmacology. January 1, 2001; 40 (1): 114-22.


Inhibition of the vacuolar H+-ATPase perturbs the transport, sorting, processing and release of regulated secretory proteins., Schoonderwoert VT., Eur J Biochem. September 1, 2000; 267 (17): 5646-54.


Induction of proopiomelanocortin mRNA expression in animal caps of Xenopus laevis embryos., Holling TM., Dev Growth Differ. August 1, 2000; 42 (4): 413-8.


Occurrence of immunoreactive Activin/Inhibin beta(B) in thyrotropes and gonadotropes in the bullfrog pituitary: possible Paracrine/Autocrine effects of activin B on gonadotropin secretion., Uchiyama H., Gen Comp Endocrinol. April 1, 2000; 118 (1): 68-76.            


Differential onset of expression of mRNAs encoding proopiomelanocortin, prohormone convertases 1 and 2, and granin family members during Xenopus laevis development., Holling TM., Brain Res Mol Brain Res. January 10, 2000; 75 (1): 70-5.      


Differential induction of two p24delta putative cargo receptors upon activation of a prohormone-producing cell., Kuiper RP., Mol Biol Cell. January 1, 2000; 11 (1): 131-40.


Molecular cloning and characterization of the chicken pro-opiomelanocortin (POMC) gene., Takeuchi S., Biochim Biophys Acta. July 8, 1999; 1450 (3): 452-9.


Cloning of proopiomelanocortin from the brain of the african lungfish, Protopterus annectens, and the brain of the western spadefoot toad, Spea multiplicatus., Lee J, Lee J., Neuroendocrinology. July 1, 1999; 70 (1): 43-54.


Biosynthesis of the vacuolar H+-ATPase accessory subunit Ac45 in Xenopus pituitary., Holthuis JC., Eur J Biochem. June 1, 1999; 262 (2): 484-91.


Immunohistochemical localization and biochemical characterization of two novel decapeptides derived from POMC-A in the trout hypothalamus., Tollemer H., Cell Tissue Res. March 1, 1999; 295 (3): 409-17.


Direct sequencing of neuropeptides in biological tissue by MALDI-PSD mass spectrometry., Jespersen S., Anal Chem. February 1, 1999; 71 (3): 660-6.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 ???pagination.result.next???