Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (15210) Expression Attributions Wiki
XB-ANAT-1

Papers associated with Xenopus anatomical entity (and npm1)

Limit to papers also referencing gene:
Show all Xenopus anatomical entity papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Intrinsically disordered regions are not sufficient to direct the compartmental localization of nucleolar proteins in the nucleus., Lavering ED., PLoS Biol. November 1, 2023; 21 (11): e3002378.            


A cyclin-dependent kinase-mediated phosphorylation switch of disordered protein condensation., Valverde JM., Nat Commun. October 9, 2023; 14 (1): 6316.                                      


Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates., Baxi AB., iScience. September 15, 2023; 26 (9): 107665.                          


Molecular dissection of condensin II-mediated chromosome assembly using in vitro assays., Yoshida MM., Elife. August 19, 2022; 11                           


Component analysis of nucleolar protein compartments using Xenopus laevis oocytes., Lavering ED., Dev Growth Differ. August 1, 2022; 64 (6): 306-317.            


Defective heart chamber growth and myofibrillogenesis after knockout of adprhl1 gene function by targeted disruption of the ancestral catalytic active site., Smith SJ., PLoS One. July 29, 2020; 15 (7): e0235433.                                            


Nucleoplasmin is a limiting component in the scaling of nuclear size with cytoplasmic volume., Chen P., J Cell Biol. December 2, 2019; 218 (12): 4063-4078.            


Isolation of nanobodies against Xenopus embryonic antigens using immune and non-immune phage display libraries., Itoh K., PLoS One. May 2, 2019; 14 (5): e0216083.          


Dual roles for ATP in the regulation of phase separated protein aggregates in Xenopus oocyte nucleoli., Hayes MH., Elife. July 17, 2018; 7                   


A NuRD Complex from Xenopus laevis Eggs Is Essential for DNA Replication during Early Embryogenesis., Christov CP., Cell Rep. February 27, 2018; 22 (9): 2265-2278.                        


Dynamic intramolecular regulation of the histone chaperone nucleoplasmin controls histone binding and release., Warren C., Nat Commun. December 20, 2017; 8 (1): 2215.              


A Quantitative Characterization of Nucleoplasmin/Histone Complexes Reveals Chaperone Versatility., Fernández-Rivero N., Sci Rep. August 25, 2016; 6 32114.              


Expression and purification of the full murine NPM2 and study of its interaction with protamines and histones., Ellard K., Biochem Biophys Rep. March 31, 2016; 6 165-171.        


Hermes (Rbpms) is a Critical Component of RNP Complexes that Sequester Germline RNAs during Oogenesis., Aguero T., J Dev Biol. March 1, 2016; 4 (1):               


Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep., Feric M., Sci Rep. November 18, 2015; 5 16607.            


A role for BMP-induced homeobox gene MIXL1 in acute myelogenous leukemia and identification of type I BMP receptor as a potential target for therapy., Raymond A., Oncotarget. December 30, 2014; 5 (24): 12675-93.              


Phosphorylation and arginine methylation mark histone H2A prior to deposition during Xenopus laevis development., Wang WL., Epigenetics Chromatin. September 6, 2014; 7 22.                


Deep proteomics of the Xenopus laevis egg using an mRNA-derived reference database., Wühr M., Curr Biol. July 7, 2014; 24 (13): 1467-1475.          


A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells., Feric M., Nat Cell Biol. October 1, 2013; 15 (10): 1253-9.        


The nuclear F-actin interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic cytokinesis., Samwer M., EMBO J. July 3, 2013; 32 (13): 1886-902.              


Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity., Ho MC., PLoS One. January 1, 2013; 8 (2): e57008.              


A large scale screen for neural stem cell markers in Xenopus retina., Parain K., Dev Neurobiol. April 1, 2012; 72 (4): 491-506.                                                    


Protein arginine methyltransferase Prmt5-Mep50 methylates histones H2A and H4 and the histone chaperone nucleoplasmin in Xenopus laevis eggs., Wilczek C., J Biol Chem. December 9, 2011; 286 (49): 42221-42231.


Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes., Brangwynne CP., Proc Natl Acad Sci U S A. March 15, 2011; 108 (11): 4334-9.    


Nucleoplasmin binds histone H2A-H2B dimers through its distal face., Ramos I., J Biol Chem. October 29, 2010; 285 (44): 33771-8.


Novel binding of the mitotic regulator TPX2 (target protein for Xenopus kinesin-like protein 2) to importin-alpha., Giesecke A., J Biol Chem. June 4, 2010; 285 (23): 17628-35.            


Xmc mediates Xctr1-independent morphogenesis in Xenopus laevis., Haremaki T., Dev Dyn. September 1, 2009; 238 (9): 2382-7.            


Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases., Yun C., J Cell Biol. November 17, 2008; 183 (4): 589-95.          


Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate., Yokoyama H., J Cell Biol. March 10, 2008; 180 (5): 867-75.          


Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation., Weston A., Nucleic Acids Res. June 12, 2006; 34 (10): 3082-94.          


TPX2 is required for postmitotic nuclear assembly in cell-free Xenopus laevis egg extracts., O'Brien LL., J Cell Biol. June 5, 2006; 173 (5): 685-94.            


The characterization of amphibian nucleoplasmins yields new insight into their role in sperm chromatin remodeling., Frehlick LJ., BMC Genomics. April 28, 2006; 7 99.                


A cell cycle arrest is necessary for bottle cell formation in the early Xenopus gastrula: integrating cell shape change, local mitotic control and mesodermal patterning., Kurth T., Mech Dev. December 1, 2005; 122 (12): 1251-65.                  


Cloning and functional characterization of the Xenopus orthologue of the Treacher Collins syndrome (TCOF1) gene product., Gonzales B., Gene. October 10, 2005; 359 73-80.          


The circadian clock-containing photoreceptor cells in Xenopus laevis express several isoforms of casein kinase I., Constance CM., Brain Res Mol Brain Res. May 20, 2005; 136 (1-2): 199-211.            


Pontin and Reptin regulate cell proliferation in early Xenopus embryos in collaboration with c-Myc and Miz-1., Etard C., Mech Dev. April 1, 2005; 122 (4): 545-56.                    


Progression elevated gene-3 (PEG-3) induces pleiotropic effects on tumor progression: modulation of genomic stability and invasion., Emdad L., J Cell Physiol. January 1, 2005; 202 (1): 135-46.


DNA replication checkpoint control of Wee1 stability by vertebrate Hsl7., Yamada A., J Cell Biol. December 6, 2004; 167 (5): 841-9.              


Xenopus Cdc14 alpha/beta are localized to the nucleolus and centrosome and are required for embryonic cell division., Kaiser BK., BMC Cell Biol. July 13, 2004; 5 27.        


Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos., Burns KH., Science. April 25, 2003; 300 (5619): 633-6.


Cloning, expression and nuclear localization of human NPM3, a member of the nucleophosmin/nucleoplasmin family of nuclear chaperones., Shackleford GM., BMC Genomics. January 1, 2001; 2 8.            


Kinetic characterization of the human retinoblastoma protein bipartite nuclear localization sequence (NLS) in vivo and in vitro. A comparison with the SV40 large T-antigen NLS., Efthymiadis A., J Biol Chem. August 29, 1997; 272 (35): 22134-9.


Molecular and cellular characterization of CRP1, a Drosophila chromatin decondensation protein., Crevel G., J Struct Biol. February 1, 1997; 118 (1): 9-22.


Remodeling somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histones H1 and H1(0) from chromatin and the acquisition of transcriptional competence., Dimitrov S., EMBO J. November 1, 1996; 15 (21): 5897-906.


Sequential binding of import ligands to distinct nucleopore regions during their nuclear import., Panté N., Science. September 20, 1996; 273 (5282): 1729-32.


Dependence of removal of sperm-specific proteins from Xenopus sperm nuclei on the phosphorylation state of nucleoplasmin., Ohsumi K., Dev Growth Differ. June 1, 1995; 37 (3): 329-336.


Chromatin decondensation in Drosophila embryo extracts., Kawasaki K., J Biol Chem. April 1, 1994; 269 (13): 10169-76.


Mapping of transcription units on Xenopus laevis lampbrush chromosomes by in situ hybridization with biotin-labeled cDNA probes., Weber T., Eur J Cell Biol. October 1, 1989; 50 (1): 144-53.


Protein import through the nuclear pore complex is a multistep process., Akey CW., J Cell Biol. September 1, 1989; 109 (3): 971-82.


The function of the nuclear envelope in nuclear protein accumulation., Zimmer FJ., J Cell Biol. May 1, 1988; 106 (5): 1435-44.            

???pagination.result.page??? 1 2 ???pagination.result.next???