Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1716) Expression Attributions Wiki
XB-ANAT-106

Papers associated with tail bud (and gdf1)

Limit to papers also referencing gene:
Show all tail bud papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The early dorsal signal in vertebrate embryos requires endolysosomal membrane trafficking., Azbazdar Y., Bioessays. January 1, 2024; 46 (1): e2300179.                            


Maternal Gdf3 is an obligatory cofactor in Nodal signaling for embryonic axis formation in zebrafish., Bisgrove BW., Elife. November 15, 2017; 6                 


High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration., Owens DA., Development. January 15, 2017; 144 (2): 292-304.                                                                                        


Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development., Tadjuidje E., Open Biol. August 1, 2016; 6 (8):             


Novel animal pole-enriched maternal mRNAs are preferentially expressed in neural ectoderm., Grant PA., Dev Dyn. March 1, 2014; 243 (3): 478-96.                                        


Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e., Cha SW., PLoS One. January 1, 2012; 7 (7): e41782.            


The RNA-binding protein, Vg1RBP, is required for pancreatic fate specification., Spagnoli FM., Dev Biol. April 15, 2006; 292 (2): 442-56.                      


The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo., Chen C., Development. January 1, 2006; 133 (2): 319-29.              


XCR2, one of three Xenopus EGF-CFC genes, has a distinct role in the regulation of left-right patterning., Onuma Y., Development. January 1, 2006; 133 (2): 237-50.                                      


Vg 1 is an essential signaling molecule in Xenopus development., Birsoy B., Development. January 1, 2006; 133 (1): 15-20.    


The RNA-binding protein Vg1 RBP is required for cell migration during early neural development., Yaniv K., Development. December 1, 2003; 130 (23): 5649-61.              


Regulation of nodal and BMP signaling by tomoregulin-1 (X7365) through novel mechanisms., Chang C., Dev Biol. March 1, 2003; 255 (1): 1-11.                    


foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain., Sullivan SA., Dev Biol. April 15, 2001; 232 (2): 439-57.            


Mesendoderm induction and reversal of left-right pattern by mouse Gdf1, a Vg1-related gene., Wall NA., Dev Biol. November 15, 2000; 227 (2): 495-509.              


Regulation of gut and heart left-right asymmetry by context-dependent interactions between xenopus lefty and BMP4 signaling., Branford WW., Dev Biol. July 15, 2000; 223 (2): 291-306.              


HNF1(beta) is required for mesoderm induction in the Xenopus embryo., Vignali R., Development. April 1, 2000; 127 (7): 1455-65.    


Neuregulin induces the expression of mesodermal genes in the ectoderm of Xenopus laevis., Chung HG., Mol Cells. October 31, 1999; 9 (5): 497-503.


Vg1 RBP intracellular distribution and evolutionarily conserved expression at multiple stages during development., Zhang Q., Mech Dev. October 1, 1999; 88 (1): 101-6.        


Xenopus GDF6, a new antagonist of noggin and a partner of BMPs., Chang C., Development. August 1, 1999; 126 (15): 3347-57.              


XCtBP is a XTcf-3 co-repressor with roles throughout Xenopus development., Brannon M., Development. June 1, 1999; 126 (14): 3159-70.                  


Anterior endomesoderm specification in Xenopus by Wnt/beta-catenin and TGF-beta signalling pathways., Zorn AM., Dev Biol. May 15, 1999; 209 (2): 282-97.                    


derrière: a TGF-beta family member required for posterior development in Xenopus., Sun BI., Development. April 1, 1999; 126 (7): 1467-82.                    


Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer., Casellas R., Dev Biol. June 1, 1998; 198 (1): 1-12.                


Xpat, a gene expressed specifically in germ plasm and primordial germ cells of Xenopus laevis., Hudson C., Mech Dev. May 1, 1998; 73 (2): 159-68.        


Xwnt-2b is a novel axis-inducing Xenopus Wnt, which is expressed in embryonic brain., Landesman Y., Mech Dev. May 1, 1997; 63 (2): 199-209.            


A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation., Horb ME., Development. May 1, 1997; 124 (9): 1689-98.                    


Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor., Thomsen GH., Development. August 1, 1996; 122 (8): 2359-66.              


TGF-beta signals and a pattern in Xenopus laevis endodermal development., Henry GL., Development. March 1, 1996; 122 (3): 1007-15.          


Xenopus poly (A) binding protein maternal RNA is localized during oogenesis and associated with large complexes in blastula., Schroeder KE., Dev Genet. January 1, 1996; 19 (3): 268-76.          


Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction., Hawley SH., Genes Dev. December 1, 1995; 9 (23): 2923-35.                


Xwnt-8b: a maternally expressed Xenopus Wnt gene with a potential role in establishing the dorsoventral axis., Cui Y., Development. July 1, 1995; 121 (7): 2177-86.          


Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled., Sokol SY., Development. June 1, 1995; 121 (6): 1637-47.              


Xwnt-11: a maternally expressed Xenopus wnt gene., Ku M., Development. December 1, 1993; 119 (4): 1161-73.              

???pagination.result.page??? 1