Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (7748) Expression Attributions Wiki
XB-ANAT-11

Papers associated with brain (and slc1a1)

Limit to papers also referencing gene:
Show all brain papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Glutamate transporters have a chloride channel with two hydrophobic gates., Chen I., Nature. March 1, 2021; 591 (7849): 327-331.


Transport rate of EAAT2 is regulated by amino acid located at the interface between the scaffolding and substrate transport domains., Duffield M., Neurochem Int. October 1, 2020; 139 104792.


Photoswitchable Inhibitor of a Glutamate Transporter., Cheng B., ACS Chem Neurosci. August 16, 2017; 8 (8): 1668-1672.


SPAK and OSR1 Sensitivity of Excitatory Amino Acid Transporter EAAT3., Borrás J., Nephron. January 1, 2015; 130 (3): 221-8.


Caffeine-induced inhibition of the activity of glutamate transporter type 3 expressed in Xenopus oocytes., Shin HJ., Toxicol Lett. February 27, 2013; 217 (2): 143-8.


Klotho sensitivity of the neuronal excitatory amino acid transporters EAAT3 and EAAT4., Almilaji A., PLoS One. January 1, 2013; 8 (7): e70988.          


Elevated ammonium levels: differential acute effects on three glutamate transporter isoforms., Søgaard R., Am J Physiol Cell Physiol. March 15, 2012; 302 (6): C880-91.


17β-Estradiol attenuates the activity of the glutamate transporter type 3 expressed in Xenopus oocytes., Na HS., Eur J Pharmacol. February 15, 2012; 676 (1-3): 20-5.


A conserved aspartate residue located at the extracellular end of the binding pocket controls cation interactions in brain glutamate transporters., Rosental N., J Biol Chem. December 2, 2011; 286 (48): 41381-41390.


Hetero-oligomerization of neuronal glutamate transporters., Nothmann D., J Biol Chem. February 4, 2011; 286 (5): 3935-43.


Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria., Bailey CG., J Clin Invest. January 1, 2011; 121 (1): 446-53.


Specificity and actions of an arylaspartate inhibitor of glutamate transport at the Schaffer collateral-CA1 pyramidal cell synapse., Sun W., PLoS One. January 1, 2011; 6 (8): e23765.          


A conserved methionine residue controls the substrate selectivity of a neuronal glutamate transporter., Rosental N., J Biol Chem. July 9, 2010; 285 (28): 21241-8.


The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters., Teichman S., Proc Natl Acad Sci U S A. August 25, 2009; 106 (34): 14297-302.


Amitriptyline inhibits the activity of the rat glutamate transporter EAAT3 expressed in Xenopus oocytes., Baik HJ., J Pharm Pharmacol. May 1, 2009; 61 (5): 577-81.


Regulation of the glutamate transporter EAAC1 by expression and activation of delta-opioid receptor., Xia P., Eur J Neurosci. July 1, 2006; 24 (1): 87-93.


Characterization of novel aryl-ether, biaryl, and fluorene aspartic acid and diaminopropionic acid analogs as potent inhibitors of the high-affinity glutamate transporter EAAT2., Dunlop J., Mol Pharmacol. October 1, 2005; 68 (4): 974-82.


Retinal colocalization and in vitro interaction of the glutamate transporter EAAT3 and the serum- and glucocorticoid-inducible kinase SGK1 [correction]., Schniepp R., Invest Ophthalmol Vis Sci. May 1, 2004; 45 (5): 1442-9.


WAY-855 (3-amino-tricyclo[2.2.1.02.6]heptane-1,3-dicarboxylic acid): a novel, EAAT2-preferring, nonsubstrate inhibitor of high-affinity glutamate uptake., Dunlop J., Br J Pharmacol. November 1, 2003; 140 (5): 839-46.


Cloning and characterization of excitatory amino acid transporters GLT-1 and EAAC1 in canine brain., Sato K., J Vet Med Sci. September 1, 2001; 63 (9): 997-1002.


Pharmacological characterization of threo-3-methylglutamic acid with excitatory amino acid transporters in native and recombinant systems., Eliasof S., J Neurochem. April 1, 2001; 77 (2): 550-7.


Functional significance of N- and C-terminus of the amino acid transporters EAAC1 and ASCT1: characterization of chimeric transporters., Li J., Biochim Biophys Acta. August 25, 2000; 1467 (2): 338-46.


Effect of benzodiazepines on the epithelial and neuronal high-affinity glutamate transporter EAAC1., Palmada M., J Neurochem. December 1, 1999; 73 (6): 2389-96.


Differentiation of substrate and nonsubstrate inhibitors of the high-affinity, sodium-dependent glutamate transporters., Koch HP., Mol Pharmacol. December 1, 1999; 56 (6): 1095-104.


Differential modulation of the uptake currents by redox interconversion of cysteine residues in the human neuronal glutamate transporter EAAC1., Trotti D., Eur J Neurosci. October 1, 1997; 9 (10): 2207-12.


Interaction of L-cysteine with a human excitatory amino acid transporter., Zerangue N., J Physiol. June 1, 1996; 493 ( Pt 2) 419-23.


Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1)., Dowd LA., Mol Pharmacol. March 1, 1996; 49 (3): 465-73.


Electrogenic properties of the epithelial and neuronal high affinity glutamate transporter., Kanai Y., J Biol Chem. July 14, 1995; 270 (28): 16561-8.


Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex., Arriza JL., J Neurosci. September 1, 1994; 14 (9): 5559-69.

???pagination.result.page??? 1