Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (7748) Expression Attributions Wiki
XB-ANAT-11

Papers associated with brain (and prl.1)

Limit to papers also referencing gene:
Show all brain papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Metamorphic gene regulation programs in Xenopus tropicalis tadpole brain., Raj S., PLoS One. January 1, 2023; 18 (6): e0287858.                


Some aspects of the hypothalamic and pituitary development, metamorphosis, and reproductive behavior as studied in amphibians., Kikuyama S., Gen Comp Endocrinol. December 1, 2019; 284 113212.


A novel type of prolactin expressed in the bullfrog pituitary specifically during the larval period., Okada R., Gen Comp Endocrinol. May 15, 2019; 276 77-85.


Understanding How the Subcommissural Organ and Other Periventricular Secretory Structures Contribute via the Cerebrospinal Fluid to Neurogenesis., Guerra MM., Front Cell Neurosci. September 23, 2015; 9 480.                


Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly., Soto X., Proc Natl Acad Sci U S A. July 2, 2013; 110 (27): 11029-34.                                      


Identification of the receptors for prolactin-releasing peptide (PrRP) and Carassius RFamide peptide (C-RFa) in chickens., Wang Y., Endocrinology. April 1, 2012; 153 (4): 1861-74.


The synthetic gestagen levonorgestrel impairs metamorphosis in Xenopus laevis by disruption of the thyroid system., Lorenz C., Toxicol Sci. September 1, 2011; 123 (1): 94-102.


Isolation and characterisation of prolactin-releasing peptide in chicks and its effect on prolactin release and feeding behaviour., Tachibana T., J Neuroendocrinol. January 1, 2011; 23 (1): 74-81.


A novel prolactin-like protein (PRL-L) gene in chickens and zebrafish: cloning and characterization of its tissue expression., Wanga Y., Gen Comp Endocrinol. March 1, 2010; 166 (1): 200-10.


Corticosteroids disrupt amphibian metamorphosis by complex modes of action including increased prolactin expression., Lorenz C., Comp Biochem Physiol C Toxicol Pharmacol. August 1, 2009; 150 (2): 314-21.


Teratogenic effects of chronic treatment with corticosterone on tadpoles of Xenopus laevis., Lorenz C., Ann N Y Acad Sci. April 1, 2009; 1163 454-6.


Differential distribution of orexin-A-like and orexin receptor 1 (OX1R)-like immunoreactivities in the Xenopus pituitary., Suzuki H., Tissue Cell. December 1, 2007; 39 (6): 423-30.


Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm., Carmona-Fontaine C., Dev Biol. September 15, 2007; 309 (2): 208-21.              


Molecular cloning and functional characterization of a prolactin-releasing peptide homolog from Xenopus laevis., Sakamoto T., Peptides. December 1, 2006; 27 (12): 3347-51.


The pituitary-specific transcription factor, Pit-1, can direct changes in the chromatin structure of the prolactin promoter., Kievit P., Mol Endocrinol. January 1, 2005; 19 (1): 138-47.


Differential distribution of melatonin receptors in the pituitary gland of Xenopus laevis., Wiechmann AF., Anat Embryol (Berl). March 1, 2003; 206 (4): 291-9.


Environmental estrogens and reproductive biology in amphibians., Mosconi G., Gen Comp Endocrinol. April 1, 2002; 126 (2): 125-9.


Relationships between CB1 cannabinoid receptors and pituitary endocrine cells in Xenopus laevis: an immunohistochemical study., Cesa R., Gen Comp Endocrinol. January 1, 2002; 125 (1): 17-24.    


Identification of G protein-coupled, inward rectifier potassium channel gene products from the rat anterior pituitary gland., Gregerson KA., Endocrinology. July 1, 2001; 142 (7): 2820-32.


Overexpression of the Xenopus tight-junction protein claudin causes randomization of the left-right body axis., Brizuela BJ., Dev Biol. February 15, 2001; 230 (2): 217-29.                


Pituitary involvement in T cell renewal during development and metamorphosis of Xenopus laevis., Rollins-Smith LA., Brain Behav Immun. September 1, 2000; 14 (3): 185-97.


Insulin-like growth factor I in the anterior pituitary of the clawed frog Xenopus laevis: immunocytochemical and autoradiographic indication for a paracrine action and corelease with prolactin., David I., J Neuroendocrinol. May 1, 2000; 12 (5): 415-20.


Cloning of a cDNA for Xenopus prolactin receptor and its metamorphic expression profile., Yamamoto T., Dev Growth Differ. April 1, 2000; 42 (2): 167-74.          


Production of a recombinant newt growth hormone and its application for the development of a radioimmunoassay., Yamamoto K., Gen Comp Endocrinol. January 1, 2000; 117 (1): 103-16.


Prolactin opens the sensitive period for androgen regulation of a larynx-specific myosin heavy chain gene., Edwards CJ., J Neurobiol. December 1, 1999; 41 (4): 443-51.


A role for xGCNF in midbrain-hindbrain patterning in Xenopus laevis., Song K., Dev Biol. September 1, 1999; 213 (1): 170-9.            


The lymnaea cardioexcitatory peptide (LyCEP) receptor: a G-protein-coupled receptor for a novel member of the RFamide neuropeptide family., Tensen CP., J Neurosci. December 1, 1998; 18 (23): 9812-21.


Involvement of glucocorticoids in the reorganization of the amphibian immune system at metamorphosis., Rollins-Smith LA., Dev Immunol. January 1, 1997; 5 (2): 145-52.


Overexpression of the homeobox gene Xnot-2 leads to notochord formation in Xenopus., Gont LK., Dev Biol. February 25, 1996; 174 (1): 174-8.  


Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin., McGrew LL., Dev Biol. November 1, 1995; 172 (1): 337-42.    


Patterning of the neural ectoderm of Xenopus laevis by the amino-terminal product of hedgehog autoproteolytic cleavage., Lai CJ., Development. August 1, 1995; 121 (8): 2349-60.            


Development and application of a homologous radioimmunoassay for Xenopus prolactin., Yamamoto K., Gen Comp Endocrinol. July 1, 1995; 99 (1): 28-34.


Three related brain nuclear receptors, NGFI-B, Nurr1, and NOR-1, as transcriptional activators., Paulsen RF., J Mol Neurosci. January 1, 1995; 6 (4): 249-55.


Molecular cloning and functional expression of a cDNA encoding the human V1b vasopressin receptor., Sugimoto T., J Biol Chem. October 28, 1994; 269 (43): 27088-92.


Modulation of the biological activity of thyrotropin-releasing hormone by alternate processing of pro-TRH., Ladram A., Biochimie. January 1, 1994; 76 (3-4): 320-8.


Immunocytochemical identification of growth hormone (GH) cells in the pituitary of three anuran species using an antiserum against purified bullfrog GH., Olivereau M., Cell Tissue Res. December 1, 1993; 274 (3): 627-30.


Functional characterization of the alternatively spliced, placental human growth hormone receptor., Urbanek M., J Biol Chem. September 5, 1993; 268 (25): 19025-32.


Isolation and characterization of two forms of Xenopus prolactin., Yamashita K., Gen Comp Endocrinol. September 1, 1993; 91 (3): 307-17.


Expression of the Xenopus laevis prolactin and thyrotropin genes during metamorphosis., Buckbinder L., Proc Natl Acad Sci U S A. May 1, 1993; 90 (9): 3820-4.


Thyrotropin-releasing hormone facilitates display of reproductive behavior and locomotor behavior in an amphibian., Taylor JA., Horm Behav. June 1, 1991; 25 (2): 128-36.


Homologous radioimmunoassay for bullfrog growth hormone., Kobayashi T., Gen Comp Endocrinol. April 1, 1991; 82 (1): 14-22.


Biochemical study of prolactin binding sites in Xenopus laevis brain and choroid plexus., Muccioli G., J Exp Zool. March 1, 1990; 253 (3): 311-8.


Purification and characterization of bullfrog growth hormone., Kobayashi T., Gen Comp Endocrinol. March 1, 1989; 73 (3): 417-24.


Effects of hypophysectomy and substitution with growth hormone, prolactin, and thyroxine on growth and deposition in juvenile frogs, Xenopus laevis., Nybroe O., Gen Comp Endocrinol. February 1, 1985; 57 (2): 257-65.


Specific binding sites for ovine prolactin in three amphibian cell lines., Dunand M., Am J Physiol. January 1, 1985; 248 (1 Pt 1): C80-7.


Effects of synthetic mammalian thyrotrophin releasing hormone, somatostatin and dopamine on the secretion of prolactin and growth hormone from amphibian and reptilian pituitary glands incubated in vitro., Hall TR., J Endocrinol. August 1, 1984; 102 (2): 175-80.


[Immunofluorescence evidence for prolactin and somatotropic cells in the hypophysis of Xenpus tadpoles (Xenopus laevis D.)]., Moriceau-Hay D., Gen Comp Endocrinol. November 1, 1979; 39 (3): 322-6.


Indirect identification of prolactin-producing cells in the pituitary gland of Xenopus laevis Daudin., Campantico E., Boll Soc Ital Biol Sper. September 15, 1979; 55 (17): 1666-72.


Histological changes in Xenopus laevis Daudin specimens kept under dry conditions, then moved back to their natural aquatic environment. I. Pituitary, thyroid and testis., Guardabassi A., Arch Sci Biol (Bologna). January 1, 1978; 62 (1-4): 51-61.

???pagination.result.page??? 1