Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (7382) Expression Attributions Wiki
XB-ANAT-11

Papers associated with brain (and pomc)

Limit to papers also referencing gene:
Show all brain papers
Results 1 - 50 of 184 results

Page(s): 1 2 3 4 Next

Sort Newest To Oldest Sort Oldest To Newest

Identifying Common Features in the Activation of Melanocortin-2 Receptors: Studies on the Xenopus tropicalis Melanocortin-2 Receptor., Davis PE., Int J Mol Sci. August 26, 2019; 20 (17):           


Plasticity for colour adaptation in vertebrates explained by the evolution of the genes pomc, pmch and pmchl., Bertolesi GE., Pigment Cell Melanoma Res. January 1, 2019; 32 (4): 510-527.  


Distribution and neuronal circuit of spexin 1/2 neurons in the zebrafish CNS., Kim E., Sci Rep. January 1, 2019; 9 (1): 5025.              


Some aspects of the hypothalamic and pituitary development, metamorphosis, and reproductive behavior as studied in amphibians., Kikuyama S., Gen Comp Endocrinol. January 1, 2019; 284 113212.


Pituitary cell translation and secretory capacities are enhanced cell autonomously by the transcription factor Creb3l2., Khetchoumian K., Nat Commun. January 1, 2019; 10 (1): 3960.                                  


Tectal corticotropin-releasing factor (CRF) neurons respond to fasting and a reactive stressor in the African Clawed Frog, Xenopus laevis., Prater CM., Gen Comp Endocrinol. January 1, 2018; 258 91-98.


Melanocortin Receptor 4 Signaling Regulates Vertebrate Limb Regeneration., Zhang M., Dev Cell. January 1, 2018; 46 (4): 397-409.e5.                              


Spatial and temporal expression profiles of urocortin 3 mRNA in the brain of the chicken (Gallus gallus)., Grommen SVH., J Comp Neurol. August 1, 2017; 525 (11): 2583-2591.


Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation., Bertolesi GE., Pigment Cell Melanoma Res. January 1, 2017; 30 (4): 413-423.


Ancient origins and evolutionary conservation of intracellular and neural signaling pathways engaged by the leptin receptor., Cui MY., Endocrinology. November 1, 2014; 155 (11): 4202-14.


Angiogenesis in the intermediate lobe of the pituitary gland alters its structure and function., Tanaka S., Gen Comp Endocrinol. May 1, 2013; 185 10-8.        


Identification of domains within the V-ATPase accessory subunit Ac45 involved in V-ATPase transport and Ca2+-dependent exocytosis., Jansen EJ., J Biol Chem. August 10, 2012; 287 (33): 27537-46.              


Pituitary melanotrope cells of Xenopus laevis are of neural ridge origin and do not require induction by the infundibulum., Eagleson GW., Gen Comp Endocrinol. August 1, 2012; 178 (1): 116-22.            


The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis., Jenks BG., Gen Comp Endocrinol. July 1, 2012; 177 (3): 315-21.      


Expression of orexin receptors in the pituitary., Kaminski T., Vitam Horm. January 1, 2012; 89 61-73.


The origins and evolution of vertebrate metamorphosis., Laudet V., Curr Biol. September 27, 2011; 21 (18): R726-37.            


ERK-regulated double cortin-like kinase (DCLK)-short phosphorylation and nuclear translocation stimulate POMC gene expression in endocrine melanotrope cells., Kuribara M., Endocrinology. June 1, 2011; 152 (6): 2321-9.


α-TC1.9 cells--a model system for analyzing the endoproteolytic processing of POMC., Chen Q., Gen Comp Endocrinol. May 15, 2011; 172 (1): 96-106.


Extracellular-signal regulated kinase regulates production of pro-opiomelanocortin in pituitary melanotroph cells., Kuribara M., J Neuroendocrinol. March 1, 2011; 23 (3): 261-8.


Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    


BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression., Kuribara M., Gen Comp Endocrinol. November 1, 2010; 169 (2): 123-9.        


V-ATPase-mediated granular acidification is regulated by the V-ATPase accessory subunit Ac45 in POMC-producing cells., Jansen EJ., Mol Biol Cell. October 1, 2010; 21 (19): 3330-9.                


Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis., van Wijk DC., Gen Comp Endocrinol. September 1, 2010; 168 (2): 293-301.        


A developmental analysis of periodic albinism in the amphibian Xenopus laevis., Eagleson GW., Gen Comp Endocrinol. September 1, 2010; 168 (2): 302-6.        


Light modulates the melanophore response to alpha-MSH in Xenopus laevis: an analysis of the signal transduction crosstalk mechanisms involved., Isoldi MC., Gen Comp Endocrinol. January 1, 2010; 165 (1): 104-10.          


The organization of CRF neuronal pathways in toads: Evidence that retinal afferents do not contribute significantly to tectal CRF content., Carr JA., Brain Behav Evol. January 1, 2010; 76 (1): 71-86.


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


COP-binding sites in p24delta2 are necessary for proper secretory cargo biosynthesis., Strating JR., Int J Biochem Cell Biol. July 1, 2009; 41 (7): 1619-27.                  


Incomplete posttranslational prohormone modifications in hyperactive neuroendocrine cells., Strating JR., BMC Cell Biol. April 13, 2009; 10 35.        


Functional diversity among p24 subfamily members., Strating JR., Biol Cell. April 1, 2009; 101 (4): 207-19.


Neurochemistry and plasticity of the median eminence and neural pituitary lobe in relation to background adaptation of Xenopus laevis., van Wijk DC., Ann N Y Acad Sci. April 1, 2009; 1163 524-7.


Teratogenic effects of chronic treatment with corticosterone on tadpoles of Xenopus laevis., Lorenz C., Ann N Y Acad Sci. April 1, 2009; 1163 454-6.


Using transgenic animal models in neuroendocrine research: lessons from Xenopus laevis., Scheenen WJ., Ann N Y Acad Sci. April 1, 2009; 1163 296-307.


Differential neuroendocrine expression of multiple brain-derived neurotrophic factor transcripts., Kidane AH., Endocrinology. March 1, 2009; 150 (3): 1361-8.


Accessory subunit Ac45 controls the V-ATPase in the regulated secretory pathway., Jansen EJ., Biochim Biophys Acta. December 1, 2008; 1783 (12): 2301-10.


Physiological manipulation of cellular activity tunes protein and ultrastructural profiles in a neuroendocrine cell., van Herp F., J Endocrinol. September 1, 2008; 198 (3): 607-16.


Pituitary adenylate cyclase-activating polypeptide regulates brain-derived neurotrophic factor exon IV expression through the VPAC1 receptor in the amphibian melanotrope cell., Kidane AH., Endocrinology. August 1, 2008; 149 (8): 4177-82.


Evolutionarily conserved glucocorticoid regulation of corticotropin-releasing factor expression., Yao M., Endocrinology. May 1, 2008; 149 (5): 2352-60.


Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


Actions of PACAP and VIP on melanotrope cells of Xenopus laevis., Kidane AH., Peptides. September 1, 2007; 28 (9): 1790-6.


Disparate effects of p24alpha and p24delta on secretory protein transport and processing., Strating JR., PLoS One. August 8, 2007; 2 (8): e704.              


Expression and physiological regulation of BDNF receptors in the neuroendocrine melanotrope cell of Xenopus laevis., Kidane AH., Gen Comp Endocrinol. August 1, 2007; 153 (1-3): 176-81.      


Structural and functional conservation of vertebrate corticotropin-releasing factor genes: evidence for a critical role for a conserved cyclic AMP response element., Yao M., Endocrinology. May 1, 2007; 148 (5): 2518-31.


Mutagenesis studies in transgenic Xenopus intermediate pituitary cells reveal structural elements necessary for correct prion protein biosynthesis., van Rosmalen JW., Dev Neurobiol. May 1, 2007; 67 (6): 715-27.        


Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis., Jenks BG., Neuroendocrinology. January 1, 2007; 85 (3): 177-85.


Transgene expression of prion protein induces crinophagy in intermediate pituitary cells., van Rosmalen JW., Dev Neurobiol. January 1, 2007; 67 (1): 81-96.              


In vivo induction of glial cell proliferation and axonal outgrowth and myelination by brain-derived neurotrophic factor., de Groot DM., Mol Endocrinol. November 1, 2006; 20 (11): 2987-98.


Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland., Calle M., J Neuroendocrinol. October 1, 2006; 18 (10): 797-805.


Evidence for the role of adenosine 5''-triphosphate-binding cassette (ABC)-A1 in the externalization of annexin 1 from pituitary folliculostellate cells and ABCA1-transfected cell models., Omer S., Endocrinology. July 1, 2006; 147 (7): 3219-27.


Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis., Calle M., Gen Comp Endocrinol. July 1, 2006; 147 (3): 237-46.        

Page(s): 1 2 3 4 Next