Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (7748) Expression Attributions Wiki
XB-ANAT-11

Papers associated with brain (and acta1)

Limit to papers also referencing gene:
Show all brain papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates., Baxi AB., iScience. September 15, 2023; 26 (9): 107665.                          


Using an aquatic model, Xenopus laevis, to uncover the role of chromodomain 1 in craniofacial disorders., Wyatt BH., Genesis. February 1, 2021; 59 (1-2): e23394.                        


Predation threats for a 24-h period activated the extension of axons in the brains of Xenopus tadpoles., Mori T., Sci Rep. July 16, 2020; 10 (1): 11737.                    


Role of the visual experience-dependent nascent proteome in neuronal plasticity., Liu HH., Elife. February 7, 2018; 7                     


Heart regeneration in adult Xenopus tropicalis after apical resection., Liao S., Cell Biosci. December 13, 2017; 7 70.                


PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation., Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.                                


A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors., Bryant DM., Cell Rep. January 17, 2017; 18 (3): 762-776.                          


Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification., Yasuoka Y., Nat Commun. July 9, 2014; 5 4322.        


EBF proteins participate in transcriptional regulation of Xenopus muscle development., Green YS., Dev Biol. October 1, 2011; 358 (1): 240-50.                    


N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements., Nandadasa S., Development. April 1, 2009; 136 (8): 1327-38.                      


DRAGON, a bone morphogenetic protein co-receptor., Samad TA., J Biol Chem. April 8, 2005; 280 (14): 14122-9.                  


Xenopus Id3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells., Light W., Development. April 1, 2005; 132 (8): 1831-41.              


Embryonic expression of Xenopus laevis SOX7., Fawcett SR., Gene Expr Patterns. January 1, 2004; 4 (1): 29-33.          


Developmental expression and differential regulation by retinoic acid of Xenopus COUP-TF-A and COUP-TF-B., van der Wees J., Mech Dev. February 1, 1996; 54 (2): 173-84.          


Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals., Papalopulu N., Development. March 1, 1993; 117 (3): 961-75.          


Differential expression of the Ca2+-binding protein parvalbumin during myogenesis in Xenopus laevis., Schwartz LM., Dev Biol. August 1, 1988; 128 (2): 441-52.              

???pagination.result.page??? 1