Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (7748) Expression Attributions Wiki
XB-ANAT-11

Papers associated with brain (and gast)

Limit to papers also referencing gene:
Show all brain papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The gastrin-releasing peptide/bombesin system revisited by a reverse-evolutionary study considering Xenopus., Hirooka A., Sci Rep. June 25, 2021; 11 (1): 13315.              


Comparative Embryonic Spatio-Temporal Expression Profile Map of the Xenopus P2X Receptor Family., Blanchard C., Front Cell Neurosci. January 1, 2019; 13 340.                    


Identical skin toxins by convergent molecular adaptation in frogs., Roelants K., Curr Biol. January 26, 2010; 20 (2): 125-30.    


The lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) receptor gene families: cloning and comparative expression analysis in Xenopus laevis., Massé K., Int J Dev Biol. January 1, 2010; 54 (8-9): 1361-74.                                          


Isolation and cDNA cloning of cholecystokinin from the skin of Rana nigrovittata., Liu X., Peptides. August 1, 2007; 28 (8): 1540-4.


A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos., Stancheva I., Mol Cell. August 1, 2003; 12 (2): 425-35.                          


Molecular cloning of an unusual bicistronic cholecystokinin receptor mRNA expressed in chicken brain: a structural and functional expression study., Nilsson IB., Regul Pept. June 15, 2003; 114 (1): 37-43.


A human gene encodes a putative G protein-coupled receptor highly expressed in the central nervous system., Donohue PJ., Brain Res Mol Brain Res. February 1, 1998; 54 (1): 152-60.


Identification of cholecystokinin-B/gastrin receptor domains that confer high gastrin affinity: utilization of a novel Xenopus laevis cholecystokinin receptor., Schmitz F., Mol Pharmacol. August 1, 1996; 50 (2): 436-41.


Cloning of a receptor for amphibian [Phe13]bombesin distinct from the receptor for gastrin-releasing peptide: identification of a fourth bombesin receptor subtype (BB4)., Nagalla SR., Proc Natl Acad Sci U S A. June 20, 1995; 92 (13): 6205-9.


Characterization of cloned human cholecystokinin-B receptor as a gastrin receptor., Miyake A., Biochem Pharmacol. April 20, 1994; 47 (8): 1339-43.


Temporal pattern of appearance and distribution of cholecystokinin-like peptides during development in Xenopus laevis., Scalise FW., Gen Comp Endocrinol. November 1, 1988; 72 (2): 303-11.    


Expression and electrophysiological identification of the receptor for bombesin and gastrin-releasing peptide in Xenopus laevis oocytes injected with polyA+ RNA from rat brain., Meyerhof W., FEBS Lett. October 24, 1988; 239 (1): 109-12.


Evidence for a common evolutionary origin of brain and pancreas cholecystokinin receptors., Vigna SR., Proc Natl Acad Sci U S A. June 1, 1986; 83 (12): 4355-9.


Is caerulein amphibian CCK?, Dimaline R., Peptides. January 1, 1983; 4 (4): 457-62.


Gastrin-like peptides in the amphibian brain: an immunohistochemical study., Doerr-Schott J., Peptides. January 1, 1981; 2 Suppl 2 99-107.


Ultrastructural identification of Gastrin-like immunoreactive nerve fibres in the brain of Xenopus laevis by means of colloidal gold or ferritin immunocytochemical methods., Doerr-Schott J., Cell Tissue Res. January 1, 1981; 216 (3): 581-9.


Immunohistochemical localization of a gastrin-like peptide in the brain of an amphibian, Xenopus laevis Daud., Doerr-Schott J., Cell Tissue Res. November 1, 1979; 203 (1): 65-78.

???pagination.result.page??? 1