Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (7748) Expression Attributions Wiki
XB-ANAT-11

Papers associated with brain (and fos)

Limit to papers also referencing gene:
Show all brain papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Cell-type expression and activation by light of neuropsins in the developing and mature Xenopus retina., Man LLH., Front Cell Neurosci. January 1, 2023; 17 1266945.                  


Regulation of gene expression downstream of a novel Fgf/Erk pathway during Xenopus development., Cowell LM., PLoS One. January 1, 2023; 18 (10): e0286040.                                  


Fosl1 is vital to heart regeneration upon apex resection in adult Xenopus tropicalis., Wu HY., NPJ Regen Med. June 29, 2021; 6 (1): 36.                    


Developmental expression patterns of fosl genes in Xenopus tropicalis., Guo XF., Gene Expr Patterns. December 1, 2019; 34 119056.                


Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor., Jalvy S., Dev Biol. March 15, 2019; 447 (2): 200-213.                                  


Melanocortin Receptor 4 Signaling Regulates Vertebrate Limb Regeneration., Zhang M., Dev Cell. August 20, 2018; 46 (4): 397-409.e5.                              


Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing., Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.                    


JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis., Tapia VS., Regeneration (Oxf). February 1, 2017; 4 (1): 21-35.                          


Ancient origins and evolutionary conservation of intracellular and neural signaling pathways engaged by the leptin receptor., Cui MY., Endocrinology. November 1, 2014; 155 (11): 4202-14.


Wiring the retinal circuits activated by light during early development., Bertolesi GE., Neural Dev. February 13, 2014; 9 3.              


Different thresholds of Wnt-Frizzled 7 signaling coordinate proliferation, morphogenesis and fate of endoderm progenitor cells., Zhang Z., Dev Biol. June 1, 2013; 378 (1): 1-12.                              


The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis., Jenks BG., Gen Comp Endocrinol. July 1, 2012; 177 (3): 315-21.      


Gene expression profiling of pituitary melanotrope cells during their physiological activation., Kuribara M., J Cell Physiol. January 1, 2012; 227 (1): 288-96.


Extracellular-signal regulated kinase regulates production of pro-opiomelanocortin in pituitary melanotroph cells., Kuribara M., J Neuroendocrinol. March 1, 2011; 23 (3): 261-8.


Integrative genomic analyses on Ikaros and its expression related to solid cancer prognosis., Yang L., Oncol Rep. August 1, 2010; 24 (2): 571-7.


A novel mouse c-fos intronic promoter that responds to CREB and AP-1 is developmentally regulated in vivo., Coulon V., PLoS One. June 21, 2010; 5 (6): e11235.            


Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis., Calle M., Gen Comp Endocrinol. July 1, 2006; 147 (3): 237-46.        


Protein phosphatase activity is necessary for myofibrillogenesis., Terry M., Cell Biochem Biophys. January 1, 2006; 45 (3): 265-78.


bHLH-dependent and -independent modes of Ath5 gene regulation during retinal development., Hutcheson DA., Development. February 1, 2005; 132 (4): 829-39.                


Distribution and acute stressor-induced activation of corticotrophin-releasing hormone neurones in the central nervous system of Xenopus laevis., Yao M., J Neuroendocrinol. November 1, 2004; 16 (11): 880-93.


Distinct enhancers regulate skeletal and cardiac muscle-specific expression programs of the cardiac alpha-actin gene in Xenopus embryos., Latinkić BV., Dev Biol. May 1, 2002; 245 (1): 57-70.          


Regulation of neurogenesis by interactions between HEN1 and neuronal LMO proteins., Bao J., Development. January 1, 2000; 127 (2): 425-35.                


An analysis of the early events when oligodendrocyte precursor cells are triggered to differentiate by thyroid hormone, retinoic acid, or PDGF withdrawal., Tokumoto YM., Dev Biol. September 15, 1999; 213 (2): 327-39.


Mesoderm induction by heterodimeric AP-1 (c-Jun and c-Fos) and its involvement in mesoderm formation through the embryonic fibroblast growth factor/Xbra autocatalytic loop during the early development of Xenopus embryos., Kim J., J Biol Chem. January 16, 1998; 273 (3): 1542-50.              


Physiologically induced Fos expression in the hypothalamo-hypophyseal system of Xenopus laevis., Ubink R., Neuroendocrinology. June 1, 1997; 65 (6): 413-22.


Activation of Xenopus MyoD transcription by members of the MEF2 protein family., Wong MW., Dev Biol. December 1, 1994; 166 (2): 683-95.              

???pagination.result.page??? 1