Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (7748) Expression Attributions Wiki
XB-ANAT-11

Papers associated with brain (and ache)

Limit to papers also referencing gene:
Show all brain papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Discovery of triazole-bridged aryl adamantane analogs as an intriguing class of multifunctional agents for treatment of Alzheimer's disease., Gutti G., Eur J Med Chem. November 5, 2023; 259 115670.


Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles., Ta AC., G3 (Bethesda). January 4, 2022; 12 (1):               


Juvenile African Clawed Frogs (Xenopus laevis) Express Growth, Metamorphosis, Mortality, Gene Expression, and Metabolic Changes When Exposed to Thiamethoxam and Clothianidin., Jenkins JA., Int J Mol Sci. December 10, 2021; 22 (24):                     


Galantamine is not a positive allosteric modulator of human α4β2 or α7 nicotinic acetylcholine receptors., Kowal NM., Br J Pharmacol. July 1, 2018; 175 (14): 2911-2925.


Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer's disease treatment., Gazova Z., Biochim Biophys Acta Mol Basis Dis. February 1, 2017; 1863 (2): 607-619.


Comparative assessment of in vitro and in vivo toxicity of azinphos methyl and its commercial formulation., Güngördü A., Environ Toxicol. September 1, 2015; 30 (9): 1091-101.


Effects of low dose endosulfan exposure on brain neurotransmitter levels in the African clawed frog Xenopus laevis., Preud'homme V., Chemosphere. February 1, 2015; 120 357-64.


RIC-3 differentially modulates α4β2 and α7 nicotinic receptor assembly, expression, and nicotine-induced receptor upregulation., Dau A., BMC Neurosci. April 15, 2013; 14 47.                


Block of neuronal nicotinic acetylcholine receptors by organophosphate insecticides., Smulders CJ., Toxicol Sci. December 1, 2004; 82 (2): 545-54.


A novel peptide modulates alpha7 nicotinic receptor responses: implications for a possible trophic-toxic mechanism within the brain., Greenfield SA., J Neurochem. July 1, 2004; 90 (2): 325-31.


Selective effects of carbamate pesticides on rat neuronal nicotinic acetylcholine receptors and rat brain acetylcholinesterase., Smulders CJ., Toxicol Appl Pharmacol. December 1, 2003; 193 (2): 139-46.


PRiMA: the membrane anchor of acetylcholinesterase in the brain., Perrier AL., Neuron. January 17, 2002; 33 (2): 275-85.


Patterns of calretinin, calbindin, and tyrosine-hydroxylase expression are consistent with the prosomeric map of the frog diencephalon., Milán FJ., J Comp Neurol. March 27, 2000; 419 (1): 96-121.                  


Role of acetylcholinesterase in the development of axon tracts within the embryonic vertebrate brain., Anderson RB., Int J Dev Neurosci. December 1, 1999; 17 (8): 787-93.


Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study., Titmus MJ., Neuroscience. January 1, 1999; 91 (2): 753-69.


Position effect variegations and brain-specific silencing in transgenic mice overexpressing human acetylcholinesterase variants., Sternfeld M., J Physiol Paris. January 1, 1998; 92 (3-4): 249-55.


Forebrain differentiation and axonogenesis in amphibians: I. Differentiation of the suprachiasmatic nucleus in relation to background adaptation behavior., Eagleson GW., Brain Behav Evol. January 1, 1998; 52 (1): 23-36.


Genetic manipulations of cholinergic communication reveal trans-acting control mechanisms over acetylcholine receptors., Broide RS., J Recept Signal Transduct Res. January 1, 1997; 17 (1-3): 279-91.


Transgenic expression of human acetylcholinesterase induces progressive cognitive deterioration in mice., Beeri R., Curr Biol. September 1, 1995; 5 (9): 1063-71.


Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3'-terminal exons., Seidman S., Mol Cell Biol. June 1, 1995; 15 (6): 2993-3002.


Transgenic engineering of neuromuscular junctions in Xenopus laevis embryos transiently overexpressing key cholinergic proteins., Shapira M., Proc Natl Acad Sci U S A. September 13, 1994; 91 (19): 9072-6.


Mutations and impaired expression in the ACHE and BCHE genes: neurological implications., Soreq H., Biomed Pharmacother. January 1, 1994; 48 (5-6): 253-9.


Expression of a human acetylcholinesterase promoter-reporter construct in developing neuromuscular junctions of Xenopus embryos., Ben Aziz-Aloya R., Proc Natl Acad Sci U S A. March 15, 1993; 90 (6): 2471-5.        


A comparison of the Xenopus laevis oocyte acetylcholinesterase with the muscle and brain enzyme suggests variations at the post-translational level., Moya MA., Comp Biochem Physiol C Comp Pharmacol Toxicol. January 1, 1991; 98 (2-3): 299-305.


Dorsomedial telencephalon of lungfishes: a pallial or subpallial structure? Criteria based on histology, connectivity, and histochemistry., von Bartheld CS., J Comp Neurol. April 1, 1990; 294 (1): 14-29.


Expression and tissue-specific assembly of human butyrylcholine esterase in microinjected Xenopus laevis oocytes., Soreq H., J Biol Chem. June 25, 1989; 264 (18): 10608-13.


Cholinoceptive properties of human primordial, preantral, and antral oocytes: in situ hybridization and biochemical evidence for expression of cholinesterase genes., Malinger G., J Mol Neurosci. January 1, 1989; 1 (2): 77-84.


The development of acetylcholinesterase activity in the embryonic nervous system of the frog, Xenopus laevis., Moody SA., Dev Biol. April 1, 1988; 467 (2): 225-32.


The use of mRNA translation in vitro and in ovo followed by crossed immunoelectrophoretic autoradiography to study the biosynthesis of human cholinesterases., Soreq H., Cell Mol Neurobiol. September 1, 1986; 6 (3): 227-37.


Polymorphism of acetylcholinesterase in discrete regions of the developing human fetal brain., Zakut H., J Neurochem. August 1, 1985; 45 (2): 382-9.


A human acetylcholinesterase gene identified by homology to the Ace region of Drosophila., Soreq H., Proc Natl Acad Sci U S A. March 1, 1985; 82 (6): 1827-31.


Expression of acetylcholinesterase gene(s) in the human brain: molecular cloning evidence for cross-homologous sequences., Zevin-Sonkin D., J Physiol (Paris). January 1, 1985; 80 (4): 221-8.


Biosynthesis and secretion of catalytically active acetylcholinesterase in Xenopus oocytes microinjected with mRNA from rat brain and from Torpedo electric organ., Soreq H., Proc Natl Acad Sci U S A. February 1, 1982; 79 (3): 830-4.


[Ontogenesis of the acetylcholine system in the brain of the South African clawed toad (Xenopus laevis Daudin)]., Schlesinger C., J Hirnforsch. January 1, 1981; 22 (5): 543-53.


Pineal complex of the clawed toad, Xenopus laevis Daud.: structure and function., Korf HW., Cell Tissue Res. January 1, 1981; 216 (1): 113-30.


The distribution of monoamine oxidase and acetylcholinesterase in the brain of Xenopus laevis tadpoles., Terlou M., Z Zellforsch Mikrosk Anat. June 28, 1973; 140 (2): 261-75.

???pagination.result.page??? 1