Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (7381) Expression Attributions Wiki
XB-ANAT-11

Papers associated with brain (and pcna)

Limit to papers also referencing gene:
Show all brain papers
Results 1 - 44 of 44 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Parallel in vivo analysis of large-effect autism genes implicates cortical neurogenesis and estrogen in risk and resilience., Willsey HR., Neuron. January 1, 2021; 109 (5): 788-804.e8.


RBL1 (p107) functions as tumor suppressor in glioblastoma and small-cell pancreatic neuroendocrine carcinoma in Xenopus tropicalis., Naert T., Oncogene. January 1, 2020; 39 (13): 2692-2706.          


The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR., Development. January 1, 2020; 147 (21):                             


The Stemness Gene Mex3A Is a Key Regulator of Neuroblast Proliferation During Neurogenesis., Naef V., Front Cell Dev Biol. January 1, 2020; 8 549533.            


Conservation and divergence of protein pathways in the vertebrate heart., Federspiel JD., PLoS Biol. January 1, 2019; 17 (9): e3000437.                                                    


Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells., Chernoff EAG., Front Cell Neurosci. January 1, 2018; 12 45.                          


The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis., Naef V., Sci Rep. January 1, 2018; 8 (1): 11836.                      


Katanin-like protein Katnal2 is required for ciliogenesis and brain development in Xenopus embryos., Willsey HR., Dev Biol. January 1, 2018; 442 (2): 276-287.                                      


Melanocortin Receptor 4 Signaling Regulates Vertebrate Limb Regeneration., Zhang M., Dev Cell. January 1, 2018; 46 (4): 397-409.e5.                              


5-hydroxymethylcytosine marks postmitotic neural cells in the adult and developing vertebrate central nervous system., Diotel N., J Comp Neurol. January 1, 2017; 525 (3): 478-497.  


Persistent fibrosis, hypertrophy and sarcomere disorganisation after endoscopy-guided heart resection in adult Xenopus., Marshall L., PLoS One. January 1, 2017; 12 (3): e0173418.                


Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis., Moreno N., Front Neuroanat. January 1, 2017; 11 24.                        


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. January 1, 2017; 292 (31): 12842-12859.        


CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis., Naert T., Sci Rep. January 1, 2016; 6 35264.                                    


YAP controls retinal stem cell DNA replication timing and genomic stability., Cabochette P., Elife. September 22, 2015; 4 e08488.                                    


The role of folate metabolism in orofacial development and clefting., Wahl SE., Dev Biol. September 1, 2015; 405 (1): 108-22.                                  


Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification., Huyck RW., Neurotoxicol Teratol. January 1, 2015; 47 102-13.                


TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis., Van Nieuwenhuysen T., Oncoscience. January 1, 2015; 2 (5): 555-66.              


Understanding How the Subcommissural Organ and Other Periventricular Secretory Structures Contribute via the Cerebrospinal Fluid to Neurogenesis., Guerra MM., Front Cell Neurosci. January 1, 2015; 9 480.                


Transit amplification in the amniote cerebellum evolved via a heterochronic shift in NeuroD1 expression., Butts T., Development. July 1, 2014; 141 (14): 2791-5.      


Cyp19a1 (aromatase) expression in the Xenopus brain at different developmental stages., Coumailleau P., J Neuroendocrinol. February 26, 2014; .          


Bioelectric signaling regulates size in zebrafish fins., Perathoner S., PLoS Genet. January 1, 2014; 10 (1): e1004080.            


Maturin is a novel protein required for differentiation during primary neurogenesis., Martinez-De Luna RI., Dev Biol. December 1, 2013; 384 (1): 26-40.                        


ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis., Janesick A., Development. August 1, 2013; 140 (15): 3095-106.                                                              


The neurogenic factor NeuroD1 is expressed in post-mitotic cells during juvenile and adult Xenopus neurogenesis and not in progenitor or radial glial cells., D'Amico LA., PLoS One. January 1, 2013; 8 (6): e66487.          


Thyroid hormone signaling in the Xenopus laevis embryo is functional and susceptible to endocrine disruption., Fini JB., Endocrinology. October 1, 2012; 153 (10): 5068-81.


Proliferation, migration and differentiation in juvenile and adult Xenopus laevis brains., D'Amico LA., Dev Biol. August 8, 2011; 1405 31-48.            


Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis., Terada K., Dev Biol. November 1, 2010; 347 (1): 180-94.                                                  


Developmental regulation of gene expression in the thyroid gland of Xenopus laevis tadpoles., Opitz R., Gen Comp Endocrinol. September 1, 2010; 168 (2): 199-208.


RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis., Wilson JM., Gene Expr Patterns. January 1, 2010; 10 (1): 44-52.          


Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans., Schlosser G., Front Zool. January 1, 2008; 5 9.              


The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development., Veldhoen N., Aquat Toxicol. December 1, 2006; 80 (3): 217-27.


Secondary neurogenesis in the brain of the African clawed frog, Xenopus laevis, as revealed by PCNA, Delta-1, Neurogenin-related-1, and NeuroD expression., Wullimann MF., J Comp Neurol. August 29, 2005; 489 (3): 387-402.


Frzb modulates Wnt-9a-mediated beta-catenin signaling during avian atrioventricular cardiac cushion development., Person AD., Dev Biol. February 1, 2005; 278 (1): 35-48.              


Embryonic expression of pre-initiation DNA replication factors in Xenopus laevis., Walter BE., Gene Expr Patterns. November 1, 2004; 5 (1): 81-9.                                


A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos., Stancheva I., Mol Cell. August 1, 2003; 12 (2): 425-35.                          


The Alzheimer-related gene presenilin-1 facilitates sonic hedgehog expression in Xenopus primary neurogenesis., Paganelli AR., Mech Dev. September 1, 2001; 107 (1-2): 119-31.      


Expression, activity, and subcellular localization of the Yin Yang 1 transcription factor in Xenopus oocytes and embryos., Ficzycz A., J Biol Chem. June 22, 2001; 276 (25): 22819-25.              


Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons., Gervasi C., J Comp Neurol. July 31, 2000; 423 (3): 512-31.                      


Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos., Stancheva I., Genes Dev. February 1, 2000; 14 (3): 313-27.                    


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


Role of HB-GAM (heparin-binding growth-associated molecule) in proliferation arrest in cells of the developing rat limb and its expression in the differentiating neuromuscular system., Szabat E., Dev Biol. August 25, 1996; 178 (1): 77-89.


Dynamic and differential Oct-1 expression during early Xenopus embryogenesis: persistence of Oct-1 protein following down-regulation of the RNA., Veenstra GJ., Mech Dev. April 1, 1995; 50 (2-3): 103-17.                            


Characterization and developmental expression of Xenopus proliferating cell nuclear antigen (PCNA)., Leibovici M., Dev Biol. September 1, 1990; 141 (1): 183-92.          

Page(s): 1