Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (7748) Expression Attributions Wiki
XB-ANAT-11

Papers associated with brain (and grin2a)

Limit to papers also referencing gene:
Show all brain papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

A convergent molecular network underlying autism and congenital heart disease., Rosenthal SB., Cell Syst. November 17, 2021; 12 (11): 1094-1107.e6.            


Positive allosteric modulators that target NMDA receptors rectify loss-of-function GRIN variants associated with neurological and neuropsychiatric disorders., Tang W., Neuropharmacology. October 15, 2020; 177 108247.


De novo GRIN variants in NMDA receptor M2 channel pore-forming loop are associated with neurological diseases., Li J., Hum Mutat. December 1, 2019; 40 (12): 2393-2413.


An NMDAR positive and negative allosteric modulator series share a binding site and are interconverted by methyl groups., Perszyk R., Elife. May 24, 2018; 7                                                                         


All naturally occurring autoantibodies against the NMDA receptor subunit NR1 have pathogenic potential irrespective of epitope and immunoglobulin class., Castillo-Gómez E., Mol Psychiatry. December 1, 2017; 22 (12): 1776-1784.


Molecular Mechanism of Disease-Associated Mutations in the Pre-M1 Helix of NMDA Receptors and Potential Rescue Pharmacology., Ogden KK., PLoS Genet. January 17, 2017; 13 (1): e1006536.                  


Effect of a GRIN2A de novo mutation associated with epilepsy and intellectual disability on NMDA receptor currents and Mg(2+) block in cultured primary cortical neurons., Marwick K., Lancet. February 26, 2015; 385 Suppl 1 S65.


GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine., Pierson TM., Ann Clin Transl Neurol. March 1, 2014; 1 (3): 190-198.        


PSD-95 interacts with NBCn1 and enhances channel-like activity without affecting Na/HCO(3) cotransport., Lee S., Cell Physiol Biochem. January 1, 2012; 30 (6): 1444-55.


A steroid modulatory domain in NR2A collaborates with NR1 exon-5 to control NMDAR modulation by pregnenolone sulfate and protons., Kostakis E., J Neurochem. November 1, 2011; 119 (3): 486-96.


Amyloid β peptide oligomers directly activate NMDA receptors., Texidó L., Cell Calcium. March 1, 2011; 49 (3): 184-90.


Cloning and Phylogenetic Analysis of NMDA Receptor Subunits NR1, NR2A and NR2B in Xenopus laevis Tadpoles., Ewald RC., Front Mol Neurosci. September 11, 2009; 2 4.          


Presynaptic NR2A-containing NMDA receptors implement a high-pass filter synaptic plasticity rule., Bidoret C., Proc Natl Acad Sci U S A. August 18, 2009; 106 (33): 14126-31.


The serine protease plasmin cleaves the amino-terminal domain of the NR2A subunit to relieve zinc inhibition of the N-methyl-D-aspartate receptors., Yuan H., J Biol Chem. May 8, 2009; 284 (19): 12862-73.


Differential effect of high pressure on NMDA receptor currents in Xenopus laevis oocytes., Mor A., Diving Hyperb Med. December 1, 2008; 38 (4): 194-6.


Effects of anesthetics on mutant N-methyl-D-aspartate receptors expressed in Xenopus oocytes., Ogata J., J Pharmacol Exp Ther. July 1, 2006; 318 (1): 434-43.


Structure-activity analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: 1-(phenanthrene-2-carbonyl) piperazine-2,3-dicarboxylic acid., Feng B., Br J Pharmacol. February 1, 2004; 141 (3): 508-16.


N-Methyl-D-aspartate receptor subtype-selectivity of homoquinolinate: an electrophysiological and radioligand binding study using both native and recombinant receptors., Grimwood S., J Neurochem. August 1, 2002; 82 (4): 794-800.


Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids., Malayev A., Br J Pharmacol. February 1, 2002; 135 (4): 901-9.


Ethanol inhibition of N-methyl-D-aspartate receptors is reduced by site-directed mutagenesis of a transmembrane domain phenylalanine residue., Ronald KM., J Biol Chem. November 30, 2001; 276 (48): 44729-35.


Does acetaldehyde mediate ethanol action in the central nervous system?, Mascia MP., Alcohol Clin Exp Res. November 1, 2001; 25 (11): 1570-5.


Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors., Low CM., Proc Natl Acad Sci U S A. September 26, 2000; 97 (20): 11062-7.


Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO-., Kim WK., Neuron. October 1, 1999; 24 (2): 461-9.


NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A., Goebel DJ., Brain Res Mol Brain Res. June 8, 1999; 69 (2): 164-70.


Oleamide potentiates benzodiazepine-sensitive gamma-aminobutyric acid receptor activity but does not alter minimum alveolar anesthetic concentration., Yost CS., Anesth Analg. June 1, 1998; 86 (6): 1294-300.


Differentiation of glycine antagonist sites of N-methyl-D-aspartate receptor subtypes. Preferential interaction of CGP 61594 with NR1/2B receptors., Honer M., J Biol Chem. May 1, 1998; 273 (18): 11158-63.


Ro 25-6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro., Fischer G., J Pharmacol Exp Ther. December 1, 1997; 283 (3): 1285-92.


Pharmacological heterogeneity of NMDA receptors: characterization of NR1a/NR2D heteromers expressed in Xenopus oocytes., Buller AL., Eur J Pharmacol. February 5, 1997; 320 (1): 87-94.


Subtype-selective inhibition of N-methyl-D-aspartate receptors by haloperidol., Ilyin VI., Mol Pharmacol. December 1, 1996; 50 (6): 1541-50.


Polyamine spider toxins and mammalian N-methyl-D-aspartate receptors. Structural basis for channel blocking and binding of argiotoxin636., Raditsch M., Eur J Biochem. September 1, 1996; 240 (2): 416-26.


Use of subunit-specific antisense oligodeoxynucleotides to define developmental changes in the properties of N-methyl-D-aspartate receptors., Zhong J., Mol Pharmacol. September 1, 1996; 50 (3): 631-8.


The 5'-untranslated region of the N-methyl-D-aspartate receptor NR2A subunit controls efficiency of translation., Wood MW., J Biol Chem. April 5, 1996; 271 (14): 8115-20.


Pharmacology of 5-chloro-7-trifluoromethyl-1,4-dihydro-2,3-quinoxalinedione: a novel systemically active ionotropic glutamate receptor antagonist., Woodward RM., J Pharmacol Exp Ther. December 1, 1995; 275 (3): 1209-18.


Spermine potentiation of recombinant N-methyl-D-aspartate receptors is affected by subunit composition., Zhang L., Proc Natl Acad Sci U S A. November 8, 1994; 91 (23): 10883-7.


Subunit-specific potentiation of recombinant N-methyl-D-aspartate receptors by histamine., Williams K., Mol Pharmacol. September 1, 1994; 46 (3): 531-41.


The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition., Buller AL., J Neurosci. September 1, 1994; 14 (9): 5471-84.

???pagination.result.page??? 1