Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (101) Attributions Wiki
XB-STAGE-119

Papers associated with adult frog stage

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Immune roles of amphibian (Xenopus laevis) tadpole granulocytes during Frog Virus 3 ranavirus infections., Koubourli DV, Wendel ES, Yaparla A, Ghaul JR, Grayfer L., Dev Comp Immunol. July 1, 2017; 72 112-118.


Frog Virus 3 dissemination in the brain of tadpoles, but not in adult Xenopus, involves blood brain barrier dysfunction., De Jesús Andino F, Jones L, Maggirwar SB, Robert J., Sci Rep. January 22, 2016; 6 22508.                            


YAP controls retinal stem cell DNA replication timing and genomic stability., Cabochette P, Vega-Lopez G, Bitard J, Parain K, Chemouny R, Masson C, Borday C, Hedderich M, Henningfeld KA, Locker M, Bronchain O, Perron M., Elife. September 22, 2015; 4 e08488.                                    


Molecular cloning and characterization of anti-Müllerian hormone (AMH) from the Japanese wrinkled frog, Rana rugosa., Kodama M, Suda M, Sakamoto D, Iwasaki T, Matsuo Y, Uno Y, Matsuda Y, Nakamura Y, Maekawa S, Katsu Y, Nakamura M., Endocrinology. May 1, 2015; 156 (5): 1914-23.


Comparative genomic and expression analysis of the adenosine signaling pathway members in Xenopus., Tocco A, Pinson B, Thiébaud P, Thézé N, Massé K., Purinergic Signal. March 1, 2015; 11 (1): 59-77.


Cranial muscle development in frogs with different developmental modes: direct development versus biphasic development., Ziermann JM, Diogo R., J Morphol. April 1, 2014; 275 (4): 398-413.


Inflammation-induced reactivation of the ranavirus Frog Virus 3 in asymptomatic Xenopus laevis., Robert J, Grayfer L, Edholm ES, Ward B, De Jesús Andino F., PLoS One. January 1, 2014; 9 (11): e112904.                


Mechanisms of amphibian macrophage development: characterization of the Xenopus laevis colony-stimulating factor-1 receptor., Grayfer L, Edholm ES, Robert J., Int J Dev Biol. January 1, 2014; 58 (10-12): 757-66.              


Plasticity of lung development in the amphibian, Xenopus laevis., Rose CS, James B., Biol Open. December 15, 2013; 2 (12): 1324-35.      


Enhanced XAO: the ontology of Xenopus anatomy and development underpins more accurate annotation of gene expression and queries on Xenbase., Segerdell E, Ponferrada VG, James-Zorn C, Burns KA, Fortriede JD, Dahdul WM, Vize PD, Zorn AM., J Biomed Semantics. October 18, 2013; 4 (1): 31.      


D-Amino acid oxidase and presence of D-proline in Xenopus laevis., Soma H, Furuya R, Kaneko R, Tsukamoto A, Shirasu K, Tanigawa M, Nagata Y., Comp Biochem Physiol B Biochem Mol Biol. October 1, 2013; 166 (2): 165-71.


Restricted neural plasticity in vestibulospinal pathways after unilateral labyrinthectomy as the origin for scoliotic deformations., Lambert FM, Malinvaud D, Gratacap M, Straka H, Vidal PP., J Neurosci. April 17, 2013; 33 (16): 6845-56.                


Imparting regenerative capacity to limbs by progenitor cell transplantation., Lin G, Chen Y, Chen Y, Slack JM., Dev Cell. January 14, 2013; 24 (1): 41-51.                          


Purines as potential morphogens during embryonic development., Massé K, Dale N., Purinergic Signal. September 1, 2012; 8 (3): 503-21.      


Expression patterns of Ephs and ephrins throughout retinotectal development in Xenopus laevis., Higenell V, Han SM, Feldheim DA, Scalia F, Ruthazer ES., Dev Neurobiol. April 1, 2012; 72 (4): 547-63.              


Expression of odorant receptor family, type 2 OR in the aquatic olfactory cavity of amphibian frog Xenopus tropicalis., Amano T, Gascuel J., PLoS One. January 1, 2012; 7 (4): e33922.            


Gene switching at Xenopus laevis metamorphosis., Mukhi S, Cai L, Brown DD., Dev Biol. February 15, 2010; 338 (2): 117-26.                


Ectophosphodiesterase/nucleotide phosphohydrolase (Enpp) nucleotidases: cloning, conservation and developmental restriction., Massé K, Bhamra S, Allsop G, Dale N, Jones EA., Int J Dev Biol. January 1, 2010; 54 (1): 181-93.                        


Identification and gastrointestinal expression of Xenopus laevis FoxF2., McLin VA, Shah R, Desai NP, Jamrich M., Int J Dev Biol. January 1, 2010; 54 (5): 919-24.          


The lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) receptor gene families: cloning and comparative expression analysis in Xenopus laevis., Massé K, Kyuno J, Bhamra S, Jones EA., Int J Dev Biol. January 1, 2010; 54 (8-9): 1361-74.                                          


Androgen receptor of the frog Rana rugosa: molecular cloning and its characterization., Yokoyama S, Oshima Y, Tokita J, Suda M, Shinozuka T, Nakamura M., J Exp Zool A Ecol Genet Physiol. December 1, 2009; 311 (10): 796-812.


Comparative expression analysis of multiple PDK genes in Xenopus laevis during oogenesis, maturation, fertilization, and early embryogenesis., Tokmakov AA, Terazawa Y, Ikeda M, Shirouzu M, Fukami Y, Yokoyama S., Gene Expr Patterns. March 1, 2009; 9 (3): 158-65.


Remodeling the exocrine pancreas at metamorphosis in Xenopus laevis., Mukhi S, Mao J, Brown DD., Proc Natl Acad Sci U S A. July 1, 2008; 105 (26): 8962-7.              


The myocardin-related transcription factor, MASTR, cooperates with MyoD to activate skeletal muscle gene expression., Meadows SM, Warkman AS, Salanga MC, Small EM, Krieg PA., Proc Natl Acad Sci U S A. February 5, 2008; 105 (5): 1545-50.        


Xenopus microRNA genes are predominantly located within introns and are differentially expressed in adult frog tissues via post-transcriptional regulation., Tang GQ, Maxwell ES., Genome Res. January 1, 2008; 18 (1): 104-12.


Phylogenetic and expression analysis of amphibian Xenopus Toll-like receptors., Ishii A, Kawasaki M, Matsumoto M, Tochinai S, Seya T., Immunogenetics. April 1, 2007; 59 (4): 281-93.


Lung specific developmental expression of the Xenopus laevis surfactant protein C and B genes., Hyatt BA, Resnik ER, Johnson NS, Lohr JL, Cornfield DN., Gene Expr Patterns. January 1, 2007; 7 (1-2): 8-14.      


The effects of presynaptic calcium channel modulation by roscovitine on transmitter release at the adult frog neuromuscular junction., Cho S, Meriney SD., Eur J Neurosci. June 1, 2006; 23 (12): 3200-8.


Cloning and developmental characterization of Xenopus laevis membrane type-3 matrix metalloproteinase (MT3-MMP)., Hammoud L, Walsh LA, Damjanovski S., Biochem Cell Biol. April 1, 2006; 84 (2): 167-77.  


Bves, a member of the Popeye domain-containing gene family., Osler ME, Smith TK, Bader DM., Dev Dyn. March 1, 2006; 235 (3): 586-93.  


Comparative genomic and expression analysis of the conserved NTPDase gene family in Xenopus., Massé K, Eason R, Bhamra S, Dale N, Jones EA., Genomics. March 1, 2006; 87 (3): 366-81.  


Muscle formation in regenerating Xenopus froglet limb., Satoh A, Ide H, Tamura K, Tamura K., Dev Dyn. June 1, 2005; 233 (2): 337-46.        


The MLC1v gene provides a transgenic marker of myocardium formation within developing chambers of the Xenopus heart., Smith SJ, Ataliotis P, Kotecha S, Towers N, Sparrow DB, Mohun TJ., Dev Dyn. April 1, 2005; 232 (4): 1003-12.            


Comparative analysis and expression of neuroserpin in Xenopus laevis., de Groot DM, Pol C, Martens GJ., Neuroendocrinology. January 1, 2005; 82 (1): 11-20.  


Analyses of immune responses to ontogeny-specific antigens using an inbred strain of Xenopus laevis (J strain)., Izutsu Y, Maéno M., Methods Mol Med. January 1, 2005; 105 149-58.


Phylogenetically conserved binding of specific K homology domain proteins to the 3'-untranslated region of the vertebrate middle neurofilament mRNA., Thyagarajan A, Szaro BG., J Biol Chem. November 26, 2004; 279 (48): 49680-8.


Spatial and temporal expression patterns of Xenopus Nkx-2.3 gene in skin epidermis during metamorphosis., Ma CM., Gene Expr Patterns. November 1, 2004; 5 (1): 129-34.  


Expression of the genes Emx1, Tbr1, and Eomes (Tbr2) in the telencephalon of Xenopus laevis confirms the existence of a ventral pallial division in all tetrapods., Brox A, Puelles L, Ferreiro B, Medina L., J Comp Neurol. July 5, 2004; 474 (4): 562-77.                


The mouse muscle creatine kinase promoter faithfully drives reporter gene expression in transgenic Xenopus laevis., Lim W, Neff ES, Furlow JD., Physiol Genomics. June 17, 2004; 18 (1): 79-86.


Characterization of embryonic cardiac pacemaker and atrioventricular conduction physiology in Xenopus laevis using noninvasive imaging., Bartlett HL, Scholz TD, Lamb FS, Weeks DL., Am J Physiol Heart Circ Physiol. June 1, 2004; 286 (6): H2035-41.


Ontogeny of Xenopus NK cells in the absence of MHC class I antigens., Horton TL, Stewart R, Cohen N, Rau L, Ritchie P, Watson MD, Robert J, Horton JD., Dev Comp Immunol. September 1, 2003; 27 (8): 715-26.


Larval antigen molecules recognized by adult immune cells of inbred Xenopus laevis: partial characterization and implication in metamorphosis., Izutsu Y, Tochinai S, Maéno M, Iwabuchi K, Onoé K., Dev Growth Differ. December 1, 2002; 44 (6): 477-88.            


Cloned bullfrog skin sodium (fENaC) and xENaC subunits hybridize to form functional sodium channels., Jensik P, Holbird D, Cox T., J Comp Physiol B. October 1, 2002; 172 (7): 569-76.


Molecular cloning and developmental expression of the caveolin gene family in the amphibian Xenopus laevis., Razani B, Park DS, Miyanaga Y, Ghatpande A, Cohen J, Wang XB, Scherer PE, Evans T, Lisanti MP., Biochemistry. June 25, 2002; 41 (25): 7914-24.


Minor histocompatibility antigen-specific MHC-restricted CD8 T cell responses elicited by heat shock proteins., Robert J, Gantress J, Rau L, Bell A, Cohen N., J Immunol. February 15, 2002; 168 (4): 1697-703.


Two forms of mitochondrial DNA ligase III are produced in Xenopus laevis oocytes., Perez-Jannotti RM, Klein SM, Bogenhagen DF., J Biol Chem. December 28, 2001; 276 (52): 48978-87.


Hypaxial muscle migration during primary myogenesis in Xenopus laevis., Martin BL, Harland RM., Dev Biol. November 15, 2001; 239 (2): 270-80.            


Xenopus kidney hyaluronidase-1 (XKH1), a novel type of membrane-bound hyaluronidase solely degrades hyaluronan at neutral pH., Reitinger S, Müllegger J, Lepperdinger G., FEBS Lett. September 14, 2001; 505 (2): 213-6.


Expression, activity, and subcellular localization of the Yin Yang 1 transcription factor in Xenopus oocytes and embryos., Ficzycz A, Eskiw C, Meyer D, Marley KE, Hurt M, Ovsenek N., J Biol Chem. June 22, 2001; 276 (25): 22819-25.              


Origins of inner ear sensory organs revealed by fate map and time-lapse analyses., Kil SH, Collazo A., Dev Biol. May 15, 2001; 233 (2): 365-79.              

???pagination.result.page??? 1 2 3 ???pagination.result.next???