Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1597) Expression Attributions Wiki
XB-ANAT-13

Papers associated with telencephalon (and pomc)

Limit to papers also referencing gene:
Show all telencephalon papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Spatial and temporal expression profiles of urocortin 3 mRNA in the brain of the chicken (Gallus gallus)., Grommen SVH., J Comp Neurol. August 1, 2017; 525 (11): 2583-2591.


Light modulates the melanophore response to alpha-MSH in Xenopus laevis: an analysis of the signal transduction crosstalk mechanisms involved., Isoldi MC., Gen Comp Endocrinol. January 1, 2010; 165 (1): 104-10.          


The organization of CRF neuronal pathways in toads: Evidence that retinal afferents do not contribute significantly to tectal CRF content., Carr JA., Brain Behav Evol. January 1, 2010; 76 (1): 71-86.


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


Evolutionarily conserved glucocorticoid regulation of corticotropin-releasing factor expression., Yao M., Endocrinology. May 1, 2008; 149 (5): 2352-60.


Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland., Calle M., J Neuroendocrinol. October 1, 2006; 18 (10): 797-805.


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


In situ hybridization localization of TRH precursor and TRH receptor mRNAs in the brain and pituitary of Xenopus laevis., Galas L., Ann N Y Acad Sci. April 1, 2005; 1040 95-105.


Immunohistochemical localization and biochemical characterization of two novel decapeptides derived from POMC-A in the trout hypothalamus., Tollemer H., Cell Tissue Res. March 1, 1999; 295 (3): 409-17.


Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis., Tuinhof R., Cell Tissue Res. May 1, 1998; 292 (2): 251-65.


Physiologically induced Fos expression in the hypothalamo-hypophyseal system of Xenopus laevis., Ubink R., Neuroendocrinology. June 1, 1997; 65 (6): 413-22.


The TRH neuronal phenotype forms embryonic cell clusters that go on to establish a regionalized cell fate in forebrain., Hayes WP., J Neurobiol. September 1, 1994; 25 (9): 1095-112.


Calcium requirement for alpha-MSH action on tail-fin melanophores of xenopus tadpoles., de Graan PN., Mol Cell Endocrinol. May 1, 1982; 26 (3): 315-26.


Biosynthesis of pairs of peptides related to melanotropin, corticotropin and endorphin in the pars intermedia of the amphibian pituitary gland., Martens GJ., Eur J Biochem. February 1, 1982; 122 (1): 1-10.


The role of the carbohydrate in the stabilization, processing, and packaging of the glycosylated adrenocorticotropin-endorphin common precursor in toad pituitaries., Loh YP., Endocrinology. August 1, 1979; 105 (2): 474-87.

???pagination.result.page??? 1