Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (314) Expression Attributions Wiki
XB-ANAT-1520

Papers associated with endoskeleton (and sox10)

Limit to papers also referencing gene:
Show all endoskeleton papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome., Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.                      


Snail2/Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development., Tien CL., Development. February 15, 2015; 142 (4): 722-31.                


The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling., Jacox L., Cell Rep. July 24, 2014; 8 (2): 596-609.                            


Role of Sp5 as an essential early regulator of neural crest specification in xenopus., Park DS., Dev Dyn. December 1, 2013; 242 (12): 1382-94.                


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos., Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.      


Essential role of AWP1 in neural crest specification in Xenopus., Seo JH., Int J Dev Biol. January 1, 2013; 57 (11-12): 829-36.                  


Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions., Prasad MS., Dev Biol. June 1, 2012; 366 (1): 10-21.


Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest., Agüero TH., Dev Biol. April 15, 2012; 364 (2): 99-113.                    


Targeted inactivation of Snail family EMT regulatory factors by a Co(III)-Ebox conjugate., Harney AS., PLoS One. January 1, 2012; 7 (2): e32318.            


Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus., Nie S., Mol Biol Cell. September 1, 2011; 22 (18): 3355-65.                                                


SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos., Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.                              


A role for FoxN3 in the development of cranial cartilages and muscles in Xenopus laevis (Amphibia: Anura: Pipidae) with special emphasis on the novel rostral cartilages., Schmidt J., J Anat. February 1, 2011; 218 (2): 226-42.


Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest., Betancur P., Proc Natl Acad Sci U S A. February 23, 2010; 107 (8): 3570-5.  


Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells., Nie S., Dev Biol. November 1, 2009; 335 (1): 132-42.                        


Myosin-X is required for cranial neural crest cell migration in Xenopus laevis., Hwang YS., Dev Dyn. October 1, 2009; 238 (10): 2522-9.      


Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives., Rogers CD., Mech Dev. January 1, 2009; 126 (1-2): 42-55.        


A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification., Bonano M., Dev Biol. November 1, 2008; 323 (1): 114-29.                          


Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA., Matthews HK., Development. May 1, 2008; 135 (10): 1771-80.                    


The mych gene is required for neural crest survival during zebrafish development., Hong SK., PLoS One. April 9, 2008; 3 (4): e2029.                


Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development., Luo T., Development. April 1, 2007; 134 (7): 1279-89.      


The mother superior mutation ablates foxd3 activity in neural crest progenitor cells and depletes neural crest derivatives in zebrafish., Montero-Balaguer M., Dev Dyn. December 1, 2006; 235 (12): 3199-212.      


To proliferate or to die: role of Id3 in cell cycle progression and survival of neural crest progenitors., Kee Y., Genes Dev. March 15, 2005; 19 (6): 744-55.            


Induction of the neural crest and the opportunities of life on the edge., Huang X., Dev Biol. November 1, 2004; 275 (1): 1-11.

???pagination.result.page??? 1