Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (5171) Expression Attributions Wiki
XB-ANAT-1536

Papers associated with muscular system (and tpm1)

Limit to papers also referencing gene:
Show all muscular system papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Spatiotemporally Controlled Mechanical Cues Drive Progenitor Mesenchymal-to-Epithelial Transition Enabling Proper Heart Formation and Function., Jackson TR., Curr Biol. May 8, 2017; 27 (9): 1326-1335.                            


A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors., Bryant DM., Cell Rep. January 17, 2017; 18 (3): 762-776.                          


The Lhx9-integrin pathway is essential for positioning of the proepicardial organ., Tandon P., Development. March 1, 2016; 143 (5): 831-40.                                    


Ventricular cell fate can be specified until the onset of myocardial differentiation., Caporilli S., Mech Dev. February 1, 2016; 139 31-41.                        


A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis., Méreau A., Mol Cell Biol. February 1, 2015; 35 (4): 758-68.              


SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton., Langdon Y., Development. March 1, 2012; 139 (5): 948-57.                


Skeletal muscle differentiation and fusion are regulated by the BAR-containing Rho-GTPase-activating protein (Rho-GAP), GRAF1., Doherty JT., J Biol Chem. July 22, 2011; 286 (29): 25903-21.                    


The BMP pathway acts to directly regulate Tbx20 in the developing heart., Mandel EM., Development. June 1, 2010; 137 (11): 1919-29.                  


Functional characterization of two CITED3 homologs (gcCITED3a and gcCITED3b) in the hypoxia-tolerant grass carp, Ctenopharyngodon idellus., Ng PK., BMC Mol Biol. November 3, 2009; 10 101.              


Analysis of splicing patterns by pyrosequencing., Méreau A., Nucleic Acids Res. October 1, 2009; 37 (19): e126.            


Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline., Christine KS., Dev Cell. April 1, 2008; 14 (4): 616-23.                                


The myocardin-related transcription factor, MASTR, cooperates with MyoD to activate skeletal muscle gene expression., Meadows SM., Proc Natl Acad Sci U S A. February 5, 2008; 105 (5): 1545-50.        


Transcription enhancer factor-1-dependent expression of the alpha-tropomyosin gene in the three muscle cell types., Pasquet S., J Biol Chem. November 10, 2006; 281 (45): 34406-20.


Differential expression of tropomyosin during segmental heart development in Mexican axolotl., Zajdel RW., J Cell Biochem. October 15, 2006; 99 (3): 952-65.


TBX5 is required for embryonic cardiac cell cycle progression., Goetz SC., Development. July 1, 2006; 133 (13): 2575-84.                


Anti-sense-mediated inhibition of expression of the novel striated tropomyosin isoform TPM1kappa disrupts myofibril organization in embryonic axolotl hearts., Zajdel RW., J Cell Biochem. July 1, 2005; 95 (4): 840-8.


Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis., Brown DD., Development. February 1, 2005; 132 (3): 553-63.                


Effects of 17beta-estradiol, nonylphenol, and bisphenol-A on developing Xenopus laevis embryos., Sone K., Gen Comp Endocrinol. September 15, 2004; 138 (3): 228-36.              


Xenopus muscle development: from primary to secondary myogenesis., Chanoine C., Dev Dyn. January 1, 2003; 226 (1): 12-23.  


Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor., Wang D., Cell. June 29, 2001; 105 (7): 851-62.  


Confocal imaging of early heart development in Xenopus laevis., Kolker SJ., Dev Biol. February 1, 2000; 218 (1): 64-73.              


A novel tropomyosin isoform encoded by the Xenopus laevis alpha-TM gene is expressed in the brain., Gaillard C., Gene. January 30, 1998; 207 (2): 235-9.


Alpha-tropomyosin gene expression in Xenopus laevis: differential promoter usage during development and controlled expression by myogenic factors., Gaillard C., Dev Genes Evol. January 1, 1998; 207 (7): 435-45.


Isoform transition of contractile proteins related to muscle remodeling with an axial gradient during metamorphosis in Xenopus laevis., Nishikawa A., Dev Biol. September 1, 1994; 165 (1): 86-94.                      


Molecular cloning, sequencing and expression of an isoform of cardiac alpha-tropomyosin from the Mexican axolotl (Ambystoma mexicanum)., Luque EA., Biochem Biophys Res Commun. August 30, 1994; 203 (1): 319-25.


Differential regulation of skeletal muscle myosin-II and brush border myosin-I enzymology and mechanochemistry by bacterially produced tropomyosin isoforms., Fanning AS., Cell Motil Cytoskeleton. January 1, 1994; 29 (1): 29-45.


Monoclonal antibodies against chicken tropomyosin isoforms: production, characterization, and application., Lin JJ., Hybridoma. January 1, 1985; 4 (3): 223-42.

???pagination.result.page??? 1