Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (5171) Expression Attributions Wiki
XB-ANAT-1536

Papers associated with muscular system (and ache)

Limit to papers also referencing gene:
Show all muscular system papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The Amphibian Short-Term Assay: Evaluation of a New Ecotoxicological Method for Amphibians Using Two Organophosphate Pesticides Commonly Found in Nature-Assessment of Biochemical, Morphological, and Life-History Traits., Boualit L., Environ Toxicol Chem. November 1, 2022; 41 (11): 2688-2699.          


Molecular determinants of binding of non-oxime bispyridinium nerve agent antidote compounds to the adult muscle nAChR., Epstein M., Toxicol Lett. April 1, 2021; 340 114-122.


Building neuromuscular junctions in vitro., Barbeau S., Development. November 16, 2020; 147 (22):       


Arachidonoylcholine and Other Unsaturated Long-Chain Acylcholines Are Endogenous Modulators of the Acetylcholine Signaling System., Akimov MG., Biomolecules. February 12, 2020; 10 (2):


Biochemical responses revealed in an amphibian species after exposure to a forgotten contaminant: An integrated biomarker assessment., Dahms-Verster S., Environ Toxicol Pharmacol. January 1, 2020; 73 103272.


Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer's disease treatment., Gazova Z., Biochim Biophys Acta Mol Basis Dis. February 1, 2017; 1863 (2): 607-619.


The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors., Grandič M., Toxicol Appl Pharmacol. December 1, 2012; 265 (2): 221-8.


An acetylcholine receptor lacking both γ and ε subunits mediates transmission in zebrafish slow muscle synapses., Mongeon R., J Gen Physiol. September 1, 2011; 138 (3): 353-66.                      


Enteric co-innervation of esophageal striated muscle fibers: a phylogenetic study., Hempfling C., Auton Neurosci. December 3, 2009; 151 (2): 135-41.


Axial-skeletal defects caused by Carbaryl in Xenopus laevis embryos., Bacchetta R., Sci Total Environ. March 15, 2008; 392 (1): 110-8.


Exposure to the organophosphorus pesticide chlorpyrifos inhibits acetylcholinesterase activity and affects muscular integrity in Xenopus laevis larvae., Colombo A., Chemosphere. December 1, 2005; 61 (11): 1665-71.


Comparative teratogenicity of chlorpyrifos and malathion on Xenopus laevis development., Bonfanti P., Aquat Toxicol. December 10, 2004; 70 (3): 189-200.


P2Y2 receptor activation regulates the expression of acetylcholinesterase and acetylcholine receptor genes at vertebrate neuromuscular junctions., Tung EK., Mol Pharmacol. October 1, 2004; 66 (4): 794-806.


Molecular characterization of an acetylcholinesterase implicated in the regulation of glucose scavenging by the parasite Schistosoma., Jones AK., FASEB J. March 1, 2002; 16 (3): 441-3.


PRiMA: the membrane anchor of acetylcholinesterase in the brain., Perrier AL., Neuron. January 17, 2002; 33 (2): 275-85.


Expression of the P2Y1 nucleotide receptor in chick muscle: its functional role in the regulation of acetylcholinesterase and acetylcholine receptor., Choi RC., J Neurosci. December 1, 2001; 21 (23): 9224-34.  


Differences in expression of acetylcholinesterase and collagen Q control the distribution and oligomerization of the collagen-tailed forms in fast and slow muscles., Krejci E., J Neurosci. December 15, 1999; 19 (24): 10672-9.


Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development., Woldeyesus MT., Genes Dev. October 1, 1999; 13 (19): 2538-48.


Acetylcholinesterase clustering at the neuromuscular junction involves perlecan and dystroglycan., Peng HB., J Cell Biol. May 17, 1999; 145 (4): 911-21.                  


Perisynaptic Schwann cells at neuromuscular junctions revealed by a novel monoclonal antibody., Astrow SH., J Neurocytol. September 1, 1998; 27 (9): 667-81.


Position effect variegations and brain-specific silencing in transgenic mice overexpressing human acetylcholinesterase variants., Sternfeld M., J Physiol Paris. January 1, 1998; 92 (3-4): 249-55.


Genetic manipulations of cholinergic communication reveal trans-acting control mechanisms over acetylcholine receptors., Broide RS., J Recept Signal Transduct Res. January 1, 1997; 17 (1-3): 279-91.


Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3'-terminal exons., Seidman S., Mol Cell Biol. June 1, 1995; 15 (6): 2993-3002.


Androgen regulation of neuromuscular junction structure and function in a sexually dimorphic muscle of the frog Xenopus laevis., Brennan C., J Neurobiol. June 1, 1995; 27 (2): 172-88.


Former neuritic pathways containing endogenous neural agrin have high synaptogenic activity., Cohen MW., Dev Biol. February 1, 1995; 167 (2): 458-68.              


Transgenic engineering of neuromuscular junctions in Xenopus laevis embryos transiently overexpressing key cholinergic proteins., Shapira M., Proc Natl Acad Sci U S A. September 13, 1994; 91 (19): 9072-6.


Overexpressed monomeric human acetylcholinesterase induces subtle ultrastructural modifications in developing neuromuscular junctions of Xenopus laevis embryos., Seidman S., J Neurochem. May 1, 1994; 62 (5): 1670-81.


Expression of a human acetylcholinesterase promoter-reporter construct in developing neuromuscular junctions of Xenopus embryos., Ben Aziz-Aloya R., Proc Natl Acad Sci U S A. March 15, 1993; 90 (6): 2471-5.        


The marginal zone of the 32-cell amphibian embryo contains all the information required for chordamesoderm development., Pierce KE., J Exp Zool. April 15, 1992; 262 (1): 40-50.


A comparison of the Xenopus laevis oocyte acetylcholinesterase with the muscle and brain enzyme suggests variations at the post-translational level., Moya MA., Comp Biochem Physiol C Comp Pharmacol Toxicol. January 1, 1991; 98 (2-3): 299-305.


Expression and tissue-specific assembly of human butyrylcholine esterase in microinjected Xenopus laevis oocytes., Soreq H., J Biol Chem. June 25, 1989; 264 (18): 10608-13.


A membrane-associated dimer of acetylcholinesterase from Xenopus skeletal muscle is solubilized by phosphatidylinositol-specific phospholipase C., Inestrosa NC., Neurosci Lett. July 19, 1988; 90 (1-2): 186-90.


Development of acetylcholinesterase induced by basic polypeptide-coated latex beads in cultured Xenopus muscle cells., Peng HB., Dev Biol. June 1, 1988; 127 (2): 452-5.


The development of acetylcholinesterase activity in the embryonic nervous system of the frog, Xenopus laevis., Moody SA., Dev Biol. April 1, 1988; 467 (2): 225-32.


Monoclonal antibody Tor 23 recognizes a determinant of a presynaptic acetylcholinesterase., Kushner PD., J Neurochem. June 1, 1987; 48 (6): 1942-53.


The use of mRNA translation in vitro and in ovo followed by crossed immunoelectrophoretic autoradiography to study the biosynthesis of human cholinesterases., Soreq H., Cell Mol Neurobiol. September 1, 1986; 6 (3): 227-37.


Comparative development of end-plate currents in two muscles of Xenopus laevis., Kullberg R., J Physiol. May 1, 1986; 374 413-27.


Elimination of preexistent acetylcholine receptor clusters induced by the formation of new clusters in the absence of nerve., Peng HB., J Neurosci. February 1, 1986; 6 (2): 581-9.


Formation of the vertebrate neuromuscular junction., Moody-Corbett F., Dev Biol (N Y 1985). January 1, 1986; 2 605-35.


Cellular and secreted forms of acetylcholinesterase in mouse muscle cultures., Rubin LL., J Neurochem. December 1, 1985; 45 (6): 1932-40.


Molecular forms of acetylcholinesterase in Xenopus muscle., Lappin RI., Dev Biol. August 1, 1985; 110 (2): 269-74.


Development of synaptic currents in immobilized muscle of Xenopus laevis., Kullberg R., J Physiol. July 1, 1985; 364 57-68.


Innervation pattern of muscles of one-legged Xenopus laevis supplied by motoneurons from both sides of the spinal cord., Denton CJ., Dev Biol. January 1, 1985; 349 (1-2): 85-94.


Membrane-related specializations associated with acetylcholine receptor aggregates induced by electric fields., Luther PW., J Cell Biol. January 1, 1985; 100 (1): 235-44.


Acetylcholine receptor aggregation parallels the deposition of a basal lamina proteoglycan during development of the neuromuscular junction., Anderson MJ., J Cell Biol. November 1, 1984; 99 (5): 1769-84.


Lineage segregation and developmental autonomy in expression of functional muscle acetylcholinesterase mRNA in the ascidian embryo., Meedel TH., Dev Biol. October 1, 1984; 105 (2): 479-87.


Structural requirements and species specificity of the inhibition by beta-endorphin of heavy acetylcholinesterase from vertebrate skeletal muscle., Haynes LW., Mol Pharmacol. July 1, 1984; 26 (1): 45-50.


Two types of miniature endplate potentials in Xenopus nerve-muscle cultures., Kidokoro Y., Neurosci Res. June 1, 1984; 1 (3): 157-70.


Participation of calcium and calmodulin in the formation of acetylcholine receptor clusters., Peng HB., J Cell Biol. February 1, 1984; 98 (2): 550-7.


Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers., Anderson MJ., J Cell Biol. November 1, 1983; 97 (5 Pt 1): 1396-411.

???pagination.result.page??? 1 2 ???pagination.result.next???