Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (69) Expression Attributions Wiki
XB-ANAT-1557

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Chromatin accessibility analysis reveals distinct functions for HDAC and EZH2 activities in early appendage regeneration., Arbach HE., Wound Repair Regen. November 1, 2022; 30 (6): 707-725.                        


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin., Gouignard N., Dis Model Mech. June 1, 2016; 9 (6): 607-20.                                      


Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development., Schille C., BMC Dev Biol. January 19, 2016; 16 1.                          


Ptbp1 and Exosc9 knockdowns trigger skin stability defects through different pathways., Noiret M., Dev Biol. January 15, 2016; 409 (2): 489-501.                


pdzrn3 is required for pronephros morphogenesis in Xenopus laevis., Marracci S., Int J Dev Biol. January 1, 2016; 60 (1-3): 57-63.                  


Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae., Taniguchi Y., Sci Rep. June 18, 2015; 5 11428.                


Use of chimeras, point mutants, and molecular modeling to map the antagonist-binding site of 4,4',4″,4‴-(carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) at P2X1 receptors for ATP., Farmer LK., J Biol Chem. January 16, 2015; 290 (3): 1559-69.              


Unique gene expression profile of the proliferating Xenopus tadpole tail blastema cells deciphered by RNA-sequencing analysis., Tsujioka H., PLoS One. January 1, 2015; 10 (3): e0111655.          


Role of Sp5 as an essential early regulator of neural crest specification in xenopus., Park DS., Dev Dyn. December 1, 2013; 242 (12): 1382-94.                


A secreted splice variant of the Xenopus frizzled-4 receptor is a biphasic modulator of Wnt signalling., Gorny AK., Cell Commun Signal. November 19, 2013; 11 89.      


Pfkfb (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) isoforms display a tissue-specific and dynamic expression during Xenopus laevis development., Pegoraro C., Gene Expr Patterns. October 1, 2013; 13 (7): 203-11.                                                        


A transgenic Xenopus laevis reporter model to study lymphangiogenesis., Ny A., Biol Open. July 11, 2013; 2 (9): 882-90.            


Kidins220/ARMS is dynamically expressed during Xenopus laevis development., Marracci S., Int J Dev Biol. January 1, 2013; 57 (9-10): 787-92.            


Essential role of AWP1 in neural crest specification in Xenopus., Seo JH., Int J Dev Biol. January 1, 2013; 57 (11-12): 829-36.                  


Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes., Mondia JP., Biomed Opt Express. August 1, 2011; 2 (8): 2383-91.          


Dazap2 is required for FGF-mediated posterior neural patterning, independent of Wnt and Cdx function., Roche DD., Dev Biol. September 1, 2009; 333 (1): 26-36.                              


Rasip1 is required for endothelial cell motility, angiogenesis and vessel formation., Xu K., Dev Biol. May 15, 2009; 329 (2): 269-79.      


Wnt11r is required for cranial neural crest migration., Matthews HK., Dev Dyn. November 1, 2008; 237 (11): 3404-9.    


A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification., Bonano M., Dev Biol. November 1, 2008; 323 (1): 114-29.                          


Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells., Morokuma J., Proc Natl Acad Sci U S A. October 28, 2008; 105 (43): 16608-13.                                  


Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline., Christine KS., Dev Cell. April 1, 2008; 14 (4): 616-23.                                


Bone morphogenetic protein-4 and Noggin signaling regulates pigment cell distribution in the axolotl trunk., Hess K., Differentiation. February 1, 2008; 76 (2): 206-18.


Identification and gene expression of versican during early development of Xenopus., Casini P., Int J Dev Biol. January 1, 2008; 52 (7): 993-8.      


BMP-4 and Noggin signaling modulate dorsal fin and somite development in the axolotl trunk., Epperlein HH., Dev Dyn. September 1, 2007; 236 (9): 2464-74.


Xenopus hairy2 functions in neural crest formation by maintaining cells in a mitotic and undifferentiated state., Nagatomo K., Dev Dyn. June 1, 2007; 236 (6): 1475-83.          


Regeneration of neural crest derivatives in the Xenopus tadpole tail., Lin G., BMC Dev Biol. May 24, 2007; 7 56.                    


Census of vertebrate Wnt genes: isolation and developmental expression of Xenopus Wnt2, Wnt3, Wnt9a, Wnt9b, Wnt10a, and Wnt16., Garriock RJ., Dev Dyn. May 1, 2007; 236 (5): 1249-58.                  


Wnt11-R signaling regulates a calcium sensitive EMT event essential for dorsal fin development of Xenopus., Garriock RJ., Dev Biol. April 1, 2007; 304 (1): 127-40.            


Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles., Beck CW., Mech Dev. September 1, 2006; 123 (9): 674-88.              


Tes regulates neural crest migration and axial elongation in Xenopus., Dingwell KS., Dev Biol. May 1, 2006; 293 (1): 252-67.                          


Members of the lysyl oxidase family are expressed during the development of the frog Xenopus laevis., Geach TJ., Differentiation. October 1, 2005; 73 (8): 414-24.                      


Macroarray-based analysis of tail regeneration in Xenopus laevis larvae., Tazaki A., Dev Dyn. August 1, 2005; 233 (4): 1394-404.                          


To proliferate or to die: role of Id3 in cell cycle progression and survival of neural crest progenitors., Kee Y., Genes Dev. March 15, 2005; 19 (6): 744-55.            


Xenopus flotillin1, a novel gene highly expressed in the dorsal nervous system., Pandur PD., Dev Dyn. December 1, 2004; 231 (4): 881-7.  


Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules., Zhou X, Zhou X., Dev Biol. July 15, 2004; 271 (2): 322-38.                                  


Independent induction and formation of the dorsal and ventral fins in Xenopus laevis., Tucker AS., Dev Dyn. July 1, 2004; 230 (3): 461-7.          


Identification of a second Xenopus twisted gastrulation gene., Oelgeschläger M., Int J Dev Biol. February 1, 2004; 48 (1): 57-61.            


A family of Xenopus BTB-Kelch repeat proteins related to ENC-1: new markers for early events in floorplate and placode development., Haigo SL., Gene Expr Patterns. October 1, 2003; 3 (5): 669-74.      


Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos., Galli A., Development. October 1, 2003; 130 (20): 4919-29.              


Expression zones of three novel genes abut the developing anterior neural plate of Xenopus embryo., Novoselov VV., Gene Expr Patterns. May 1, 2003; 3 (2): 225-30.                              


Beta-catenin, MAPK and Smad signaling during early Xenopus development., Schohl A., Development. January 1, 2002; 129 (1): 37-52.                                                                                                      


Neural and head induction by insulin-like growth factor signals., Pera EM., Dev Cell. November 1, 2001; 1 (5): 655-65.    


The FGFR pathway is required for the trunk-inducing functions of Spemann's organizer., Mitchell TS., Dev Biol. September 15, 2001; 237 (2): 295-305.        


Distinct origins of adult and embryonic blood in Xenopus., Ciau-Uitz A., Cell. September 15, 2000; 102 (6): 787-96.        


Relationship between gene expression domains of Xsnail, Xslug, and Xtwist and cell movement in the prospective neural crest of Xenopus., Linker C., Dev Biol. August 15, 2000; 224 (2): 215-25.              


Expression and characterization of Xenopus type I collagen alpha 1 (COL1A1) during embryonic development., Goto T., Dev Growth Differ. June 1, 2000; 42 (3): 249-56.        


The fate of cells in the tailbud of Xenopus laevis., Davis RL., Development. January 1, 2000; 127 (2): 255-67.              


Novel structural elements identified during tail resorption in Xenopus laevis metamorphosis: lessons from tailed frogs., Elinson RP., Dev Biol. November 15, 1999; 215 (2): 243-52.                


Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension., Davidson LA., Development. October 1, 1999; 126 (20): 4547-56.              

???pagination.result.page??? 1 2 ???pagination.result.next???