Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (984) Expression Attributions Wiki
XB-ANAT-1564

Papers associated with hypothalamus (and cftr)

Limit to papers also referencing gene:
Show all hypothalamus papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization., Mihályi C., Elife. June 21, 2016; 5         


Structure-activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects., Csanády L., J Gen Physiol. October 1, 2014; 144 (4): 321-36.                    


Catalyst-like modulation of transition states for CFTR channel opening and closing: new stimulation strategy exploits nonequilibrium gating., Csanády L., J Gen Physiol. February 1, 2014; 143 (2): 269-87.                        


Mutant cycles at CFTR's non-canonical ATP-binding site support little interface separation during gating., Szollosi A., J Gen Physiol. June 1, 2011; 137 (6): 549-62.                  


Involvement of F1296 and N1303 of CFTR in induced-fit conformational change in response to ATP binding at NBD2., Szollosi A., J Gen Physiol. October 1, 2010; 136 (4): 407-23.                


Regulation of CFTR trafficking by its R domain., Lewarchik CM., J Biol Chem. October 17, 2008; 283 (42): 28401-12.


CFTR-dependent Cl- secretion in Xenopus laevis lung epithelium., Sommer D., Respir Physiol Neurobiol. August 15, 2007; 158 (1): 97-106.


Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA., Csanády L., J Gen Physiol. February 1, 2005; 125 (2): 171-86.                  


Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain., Csanády L., J Gen Physiol. January 1, 2005; 125 (1): 43-55.              


Potentiation of effect of PKA stimulation of Xenopus CFTR by activation of PKC: role of NBD2., Chen Y., Am J Physiol Cell Physiol. November 1, 2004; 287 (5): C1436-44.


Mechanism of activation of Xenopus CFTR by stimulation of PKC., Chen Y., Am J Physiol Cell Physiol. November 1, 2004; 287 (5): C1256-63.


Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells., Hallows KR., Am J Physiol Cell Physiol. May 1, 2003; 284 (5): C1297-308.


On the mechanism of MgATP-dependent gating of CFTR Cl- channels., Vergani P., J Gen Physiol. January 1, 2003; 121 (1): 17-36.                          


CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction., Smith SS., J Gen Physiol. October 1, 2001; 118 (4): 407-31.                                      


Anion permeation in Ca(2+)-activated Cl(-) channels., Qu Z., J Gen Physiol. December 1, 2000; 116 (6): 825-44.                          


Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains., Csanády L., J Gen Physiol. September 1, 2000; 116 (3): 477-500.                          


Effect of genistein on native epithelial tissue from normal individuals and CF patients and on ion channels expressed in Xenopus oocytes., Mall M., Br J Pharmacol. August 1, 2000; 130 (8): 1884-92.


Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain., Chan KW., J Gen Physiol. August 1, 2000; 116 (2): 163-80.                          


Cystic fibrosis transmembrane conductance regulator. Physical basis for lyotropic anion selectivity patterns., Smith SS., J Gen Physiol. December 1, 1999; 114 (6): 799-818.                


Structural and ionic determinants of 5-nitro-2-(3-phenylprophyl-amino)-benzoic acid block of the CFTR chloride channel., Walsh KB., Br J Pharmacol. May 1, 1999; 127 (2): 369-76.


Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC., Briel M., J Physiol. May 1, 1998; 508 ( Pt 3) 825-36.


Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes., Chraïbi A., J Gen Physiol. January 1, 1998; 111 (1): 127-38.              


Expression of the cystic fibrosis phenotype in a renal amphibian epithelial cell line., Ling BN., J Biol Chem. January 3, 1997; 272 (1): 594-600.


Regulation of the CFTR chloride channel from humans and sharks., Hanrahan JW., J Exp Zool. July 1, 1996; 275 (4): 283-91.


Differential acidic pH sensitivity of delta F508 CFTR Cl- channel activity in lipid bilayers., Sherry AM., Am J Physiol. March 1, 1994; 266 (3 Pt 1): C870-5.

???pagination.result.page??? 1