Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (41) Expression Attributions Wiki
XB-ANAT-1591

Papers associated with horizontal cell

Limit to papers also referencing gene:
Results 1 - 41 of 41 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells., Miraucourt LS., Elife. January 1, 2016; 5                     


Specific connectivity between photoreceptors and horizontal cells in the zebrafish retina., Klaassen LJ., J Neurophysiol. January 1, 2016; 116 (6): 2799-2814.


Evolution of the vertebrate Pax4/6 class of genes with focus on its novel member, the Pax10 gene., Feiner N., Genome Biol Evol. June 19, 2014; 6 (7): 1635-51.              


Islet-1 immunoreactivity in the developing retina of Xenopus laevis., Álvarez-Hernán G., ScientificWorldJournal. January 1, 2013; 2013 740420.              


sox4 and sox11 function during Xenopus laevis eye development., Cizelsky W., PLoS One. January 1, 2013; 8 (7): e69372.              


Expression characteristics of dual-promoter lentiviral vectors targeting retinal photoreceptors and Müller cells., Semple-Rowland SL., Mol Vis. May 27, 2010; 16 916-34.                  


Hemichannel-mediated and pH-based feedback from horizontal cells to cones in the vertebrate retina., Fahrenfort I., PLoS One. June 30, 2009; 4 (6): e6090.                        


The role of Xenopus Rx-L in photoreceptor cell determination., Wu HY., Dev Biol. March 15, 2009; 327 (2): 352-65.            


Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development., Lin AC., Neural Dev. March 2, 2009; 4 8.              


Ptf1a triggers GABAergic neuronal cell fates in the retina., Dullin JP., BMC Dev Biol. May 24, 2007; 7 110.              


Properties of connexin26 hemichannels expressed in Xenopus oocytes., Ripps H., Cell Mol Neurobiol. October 1, 2004; 24 (5): 647-65.


Differential distribution of Mel(1a) and Mel(1c) melatonin receptors in Xenopus laevis retina., Wiechmann AF., Exp Eye Res. January 1, 2003; 76 (1): 99-106.          


Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands., Mann F., Neuron. August 1, 2002; 35 (3): 461-73.  


Functional anatomy of the photoreceptor and second-order cell mosaics in the retina of Xenopus laevis., Wilhelm M., Cell Tissue Res. July 1, 1999; 297 (1): 35-46.


Endothelial nitric oxide synthase (eNOS) is localized to Müller cells in all vertebrate retinas., Haverkamp S., Vision Res. July 1, 1999; 39 (14): 2299-303.


Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis., Brown NL., Development. December 1, 1998; 125 (23): 4821-33.    


Gain of rod to horizontal cell synaptic transfer: relation to glutamate release and a dihydropyridine-sensitive calcium current., Witkovsky P., J Neurosci. October 1, 1997; 17 (19): 7297-306.


Both high- and low voltage-activated calcium currents contribute to the light-evoked responses of luminosity horizontal cells in the Xenopus retina., Akopian A., Dev Biol. July 11, 1997; 762 (1-2): 121-30.


Early expression of a novel radial glia antigen in the chick embryo., Prada FA., Glia. December 1, 1995; 15 (4): 389-400.


White noise analysis of a chromatic type horizontal cell in the Xenopus retina., Stone SL., J Gen Physiol. June 1, 1994; 103 (6): 991-1017.


Modulation of transient outward potassium current by GTP, calcium, and glutamate in horizontal cells of the Xenopus retina., Akopian A., J Neurophysiol. May 1, 1994; 71 (5): 1661-71.


Effects of submicromolar concentrations of dopamine on photoreceptor to horizontal cell communication., Krizaj D., Dev Biol. November 5, 1993; 627 (1): 122-8.


A chromatic horizontal cell in the Xenopus retina: intracellular staining and synaptic pharmacology., Stone S., J Neurophysiol. December 1, 1990; 64 (6): 1683-94.


Slow light and dark adaptation of horizontal cells in the Xenopus retina: a role for endogenous dopamine., Witkovsky P., Vis Neurosci. October 1, 1990; 5 (4): 405-13.


Glycinergic contacts in the outer plexiform layer of the Xenopus laevis retina characterized by antibodies to glycine, GABA and glycine receptors., Smiley JF., J Comp Neurol. September 15, 1990; 299 (3): 375-88.


Photoreceptor to horizontal cell synaptic transfer in the Xenopus retina: modulation by dopamine ligands and a circuit model for interactions of rod and cone inputs., Witkovsky P., J Neurophysiol. October 1, 1989; 62 (4): 864-81.


The internal horizontal cell of the frog: spatial summation., Mascetti GG., Acta Physiol Pharmacol Latinoam. January 1, 1989; 39 (2): 165-72.


Morphology and synaptic connections of HRP-filled, axon-bearing horizontal cells in the Xenopus retina., Witkovsky P., J Comp Neurol. September 1, 1988; 275 (1): 29-38.


Somatostatin-like immunoreactivity and glycine high-affinity uptake colocalize to an interplexiform cell of the Xenopus laevis retina., Smiley JF., J Comp Neurol. August 22, 1988; 274 (4): 608-18.


Dopamine modifies the balance of rod and cone inputs to horizontal cells of the Xenopus retina., Witkovsky P., Dev Biol. May 24, 1988; 449 (1-2): 332-6.


GABA release from Xenopus retina does not correlate with horizontal cell membrane potential., Cunningham JR., Neuroscience. January 1, 1988; 24 (1): 39-48.


GABA and glycine modify the balance of rod and cone inputs to horizontal cells in the Xenopus retina., Witkovsky P., Exp Biol. January 1, 1987; 47 (1): 13-22.


Center-surround organization of Xenopus horizontal cells and its modification by gamma-aminobutyric acid and strontium., Stone S., Exp Biol. January 1, 1987; 47 (1): 1-12.


The actions of gamma-aminobutyric acid, glycine and their antagonists upon horizontal cells of the Xenopus retina., Stone S., J Physiol. August 1, 1984; 353 249-64.


Phosphoinositide metabolism in the retina: localization to horizontal cells and regulation by light and divalent cations., Anderson RE., J Neurochem. September 1, 1983; 41 (3): 764-71.


Rod and cone inputs to bipolar and horizontal cells of the Xenopus retina., Witkovsky P., Vision Res. January 1, 1983; 23 (11): 1251-8.


Intracellular recording from identified photoreceptors and horizontal cells of the Xenopus retina., Hassin G., Vision Res. January 1, 1983; 23 (10): 921-31.


A freeze-fracture study of synaptogenesis in the distal retina of larval Xenopus., Nagy AR., J Neurocytol. December 1, 1981; 10 (6): 897-919.


Light stimulates the incorporation of inositol into phosphatidylinositol in the retina., Anderson RE., Biochim Biophys Acta. September 24, 1981; 665 (3): 619-22.


Synapse formation and modification between distal retinal neurons in larval and juvenile Xenopus., Witkovsky P., Proc R Soc Lond B Biol Sci. March 11, 1981; 211 (1184): 373-89.


The formation of photoreceptor synapses in the retina of larval Xenopus., Chen F., J Neurocytol. December 1, 1978; 7 (6): 721-40.

Page(s): 1