Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4274) Expression Attributions Wiki
XB-ANAT-170

Papers associated with muscle (and fgf4)

Limit to papers also referencing gene:
Show all muscle papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Evolution of Somite Compartmentalization: A View From Xenopus., Della Gaspera B., Front Cell Dev Biol. January 1, 2021; 9 790847.                  


Skeletal muscle differentiation drives a dramatic downregulation of RNA polymerase III activity and differential expression of Polr3g isoforms., McQueen C., Dev Biol. October 1, 2019; 454 (1): 74-84.                        


Xenopus laevis FGF16 activates the expression of genes coding for the transcription factors Sp5 and Sp5l., Elsy M., Int J Dev Biol. January 1, 2019; 63 (11-12): 631-639.            


Identification of microRNAs and microRNA targets in Xenopus gastrulae: The role of miR-26 in the regulation of Smad1., Liu C., Dev Biol. January 1, 2016; 409 (1): 26-38.                


Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites., Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.                                          


An essential role for LPA signalling in telencephalon development., Geach TJ., Development. February 1, 2014; 141 (4): 940-9.                            


In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency., Gentsch GE., Cell Rep. September 26, 2013; 4 (6): 1185-96.                              


Lin28 proteins are required for germ layer specification in Xenopus., Faas L., Development. March 1, 2013; 140 (5): 976-86.                      


Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency., Hammachi F., Cell Rep. February 23, 2012; 1 (2): 99-109.                          


The forkhead transcription factor FoxB1 regulates the dorsal-ventral and anterior-posterior patterning of the ectoderm during early Xenopus embryogenesis., Takebayashi-Suzuki K., Dev Biol. December 1, 2011; 360 (1): 11-29.              


Inhibition of FGF signaling converts dorsal mesoderm to ventral mesoderm in early Xenopus embryos., Lee SY., Differentiation. September 1, 2011; 82 (2): 99-107.                    


The FGFRL1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos., Steinberg F., J Biol Chem. January 15, 2010; 285 (3): 2193-202.  


Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1., Herr P., Development. May 1, 2008; 135 (10): 1813-22.                    


VegT, eFGF and Xbra cause overall posteriorization while Xwnt8 causes eye-level restricted posteriorization in synergy with chordin in early Xenopus development., Fujii H., Dev Growth Differ. March 1, 2008; 50 (3): 169-80.                  


CHD4/Mi-2beta activity is required for the positioning of the mesoderm/neuroectoderm boundary in Xenopus., Linder B., Genes Dev. April 15, 2007; 21 (8): 973-83.            


FGF4 regulates blood and muscle specification in Xenopus laevis., Isaacs HV., Biol Cell. March 1, 2007; 99 (3): 165-73.


Role for amplification and expression of glypican-5 in rhabdomyosarcoma., Williamson D., Cancer Res. January 1, 2007; 67 (1): 57-65.


FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus., Fletcher RB., Development. May 1, 2006; 133 (9): 1703-14.            


Analysis of scleraxis and dermo-1 genes in a regenerating limb of Xenopus laevis., Satoh A., Dev Dyn. April 1, 2006; 235 (4): 1065-73.      


The zic1 gene is an activator of Wnt signaling., Merzdorf CS., Int J Dev Biol. January 1, 2006; 50 (7): 611-7.              


Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition., Delaune E., Development. January 1, 2005; 132 (2): 299-310.                    


Screening of FGF target genes in Xenopus by microarray: temporal dissection of the signalling pathway using a chemical inhibitor., Chung HA., Genes Cells. August 1, 2004; 9 (8): 749-61.                            


A dynamic requirement for community interactions during Xenopus myogenesis., Standley HJ., Int J Dev Biol. May 1, 2002; 46 (3): 279-83.        


Zygotic Wnt/beta-catenin signaling preferentially regulates the expression of Myf5 gene in the mesoderm of Xenopus., Shi DL., Dev Biol. May 1, 2002; 245 (1): 124-35.


eFGF is required for activation of XmyoD expression in the myogenic cell lineage of Xenopus laevis., Fisher ME, Fisher ME., Development. March 1, 2002; 129 (6): 1307-15.    


The Wnt/beta-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling., Domingos PM., Dev Biol. November 1, 2001; 239 (1): 148-60.              


Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning., Nutt SL., Genes Dev. May 1, 2001; 15 (9): 1152-66.                


eFGF and its mode of action in the community effect during Xenopus myogenesis., Standley HJ., Development. April 1, 2001; 128 (8): 1347-57.    


FGF signaling restricts the primary blood islands to ventral mesoderm., Kumano G., Dev Biol. December 15, 2000; 228 (2): 304-14.            


A screen for targets of the Xenopus T-box gene Xbra., Saka Y., Mech Dev. May 1, 2000; 93 (1-2): 27-39.                  


Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm., Kishi M., Development. February 1, 2000; 127 (4): 791-800.              


The fate of cells in the tailbud of Xenopus laevis., Davis RL., Development. January 1, 2000; 127 (2): 255-67.              


Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development., Casey ES., Development. October 1, 1999; 126 (19): 4193-200.              


Opposite effects of FGF and BMP-4 on embryonic blood formation: roles of PV.1 and GATA-2., Xu RH., Dev Biol. April 15, 1999; 208 (2): 352-61.    


derrière: a TGF-beta family member required for posterior development in Xenopus., Sun BI., Development. April 1, 1999; 126 (7): 1467-82.                    


The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping., Campione M., Development. March 1, 1999; 126 (6): 1225-34.            


Neural crest induction in Xenopus: evidence for a two-signal model., LaBonne C., Development. July 1, 1998; 125 (13): 2403-14.                  


Mesoderm induction by heterodimeric AP-1 (c-Jun and c-Fos) and its involvement in mesoderm formation through the embryonic fibroblast growth factor/Xbra autocatalytic loop during the early development of Xenopus embryos., Kim J., J Biol Chem. January 16, 1998; 273 (3): 1542-50.              


Involvement of NF-kappaB associated proteins in FGF-mediated mesoderm induction., Beck CW., Int J Dev Biol. January 1, 1998; 42 (1): 67-77.                  


Ectodermal patterning in vertebrate embryos., Sasai Y., Dev Biol. February 1, 1997; 182 (1): 5-20.              

???pagination.result.page??? 1