Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (762) Expression Attributions Wiki
XB-ANAT-18

Papers associated with hypophysis (and actl6a)

Limit to papers also referencing gene:
Show all hypophysis papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.                                            


VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in Xenopus., Ciau-Uitz A., Development. June 1, 2013; 140 (12): 2632-42.                                                                                                                            


Multiple kisspeptin receptors in early osteichthyans provide new insights into the evolution of this receptor family., Pasquier J., PLoS One. January 1, 2012; 7 (11): e48931.              


WD repeat-containing protein 5, a ubiquitously expressed histone methyltransferase adaptor protein, regulates smooth muscle cell-selective gene activation through interaction with pituitary homeobox 2., Gan Q., J Biol Chem. June 17, 2011; 286 (24): 21853-64.  


Ionotropic glutamate receptor AMPA 1 is associated with ovulation rate., Sugimoto M., PLoS One. November 3, 2010; 5 (11): e13817.          


V-ATPase-mediated granular acidification is regulated by the V-ATPase accessory subunit Ac45 in POMC-producing cells., Jansen EJ., Mol Biol Cell. October 1, 2010; 21 (19): 3330-9.                


Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development., Luo T., Development. April 1, 2007; 134 (7): 1279-89.      


Transgenic frogs expressing the highly fluorescent protein venus under the control of a strong mammalian promoter suitable for monitoring living cells., Sakamaki K., Dev Dyn. June 1, 2005; 233 (2): 562-9.            


Role of cortical filamentous actin in the melanotrope cell of Xenopus laevis., Corstens GJ., Gen Comp Endocrinol. November 1, 2003; 134 (2): 95-102.


Occurrence of neurotrophin receptors and transmitters in the developing Xenopus gut., Holmberg A., Cell Tissue Res. October 1, 2001; 306 (1): 35-47.


Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus., McGrew LL., Mech Dev. December 1, 1997; 69 (1-2): 105-14.          


Patterning of the neural ectoderm of Xenopus laevis by the amino-terminal product of hedgehog autoproteolytic cleavage., Lai CJ., Development. August 1, 1995; 121 (8): 2349-60.            


A vertebrate homolog of the actin-bundling protein fascin., Holthuis JC., Biochim Biophys Acta. September 13, 1994; 1219 (1): 184-8.


Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization., Tenenhouse HS., J Clin Invest. February 1, 1994; 93 (2): 671-6.


Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals., Papalopulu N., Development. March 1, 1993; 117 (3): 961-75.          


Cephalic expression and molecular characterization of Xenopus En-2., Hemmati-Brivanlou A., Development. March 1, 1991; 111 (3): 715-24.    

???pagination.result.page??? 1