Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (736) Expression Attributions Wiki
XB-ANAT-18

Papers associated with hypophysis

Limit to papers also referencing gene:
Results 1 - 50 of 736 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Sort Newest To Oldest Sort Oldest To Newest

Thyroid Disrupting Chemicals in mixture Perturb Thymocyte Differentiation in Xenopus laevis tadpoles., McGuire CC., Toxicol Sci. March 3, 2021;


FERM domain-containing protein 6 identifies a subpopulation of varicose nerve fibers in different vertebrate species., Beck J., Cell Tissue Res. July 1, 2020; 381 (1): 13-24.                            


Characterization of a novel thyrotropin-releasing hormone receptor, TRHR3, in chickens., Li X., Poult Sci. March 1, 2020; 99 (3): 1643-1654.              


DNA methylation dynamics underlie metamorphic gene regulation programs in Xenopus tadpole brain., Kyono Y., Dev Biol. January 1, 2020; 462 (2): 180-196.


Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish., Jessus C., Cells. January 1, 2020; 9 (5):           


Disruptive effects of two organotin pesticides on the thyroid signaling pathway in Xenopus laevis during metamorphosis., Li S., Sci Total Environ. December 20, 2019; 697 134140.


Exposure to graphene oxide at environmental concentrations induces thyroid endocrine disruption and lipid metabolic disturbance in Xenopus laevis., Li M., Chemosphere. December 1, 2019; 236 124834.


Identifying Common Features in the Activation of Melanocortin-2 Receptors: Studies on the Xenopus tropicalis Melanocortin-2 Receptor., Davis PE., Int J Mol Sci. August 26, 2019; 20 (17):           


From axolotl to zebrafish: a comparative approach to the study of thyroid involvement in ocular development., Williams DL., Eye (Lond). January 1, 2019; 33 (2): 218-222.


A novel type of prolactin expressed in the bullfrog pituitary specifically during the larval period., Okada R., Gen Comp Endocrinol. January 1, 2019; 276 77-85.


Plasticity for colour adaptation in vertebrates explained by the evolution of the genes pomc, pmch and pmchl., Bertolesi GE., Pigment Cell Melanoma Res. January 1, 2019; 32 (4): 510-527.  


A microarray-based comparative analysis of gene expression profiles in thyroid glands in amphibian metamorphosis: differences in effects between chemical exposure and food restriction., Ose K., J Appl Toxicol. January 1, 2019; 39 (7): 1030-1042.


Distribution and neuronal circuit of spexin 1/2 neurons in the zebrafish CNS., Kim E., Sci Rep. January 1, 2019; 9 (1): 5025.              


PACAP-38 and PACAP(6-38) Degranulate Rat Meningeal Mast Cells via the Orphan MrgB3-Receptor., Pedersen SH., Front Cell Neurosci. January 1, 2019; 13 114.              


Some aspects of the hypothalamic and pituitary development, metamorphosis, and reproductive behavior as studied in amphibians., Kikuyama S., Gen Comp Endocrinol. January 1, 2019; 284 113212.


From Synthetic Fragments of Endogenous Three-Finger Proteins to Potential Drugs., Kryukova EV., Front Pharmacol. January 1, 2019; 10 748.        


Overexpression of Lin28a delays Xenopus metamorphosis and down-regulates albumin independently of its translational regulation domain., Gundermann DG., Dev Dyn. January 1, 2019; 248 (10): 969-978.          


Action spectrum for photoperiodic control of thyroid-stimulating hormone in Japanese quail (Coturnix japonica)., Nakane Y., PLoS One. January 1, 2019; 14 (9): e0222106.      


Pituitary cell translation and secretory capacities are enhanced cell autonomously by the transcription factor Creb3l2., Khetchoumian K., Nat Commun. January 1, 2019; 10 (1): 3960.                                  


Xenopus laevis FGF16 activates the expression of genes coding for the transcription factors Sp5 and Sp5l., Elsy M., Int J Dev Biol. January 1, 2019; 63 (11-12): 631-639.            


Nervous NDRGs: the N-myc downstream-regulated gene family in the central and peripheral nervous system., Schonkeren SL., Neurogenetics. January 1, 2019; 20 (4): 173-186.      


Developmental gene expression patterns in the brain and liver of Xenopus tropicalis during metamorphosis climax., Yaoita Y., Genes Cells. December 1, 2018; 23 (12): 998-1008.              


The progestin norethisterone affects thyroid hormone-dependent metamorphosis of Xenopus laevis tadpoles at environmentally relevant concentrations., Lorenz C., Ecotoxicol Environ Saf. April 15, 2018; 150 86-95.


Anosmin-1 is essential for neural crest and cranial placodes formation in Xenopus., Bae CJ., Biochem Biophys Res Commun. January 1, 2018; 495 (3): 2257-2263.        


Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo., Gouignard N., PLoS One. January 1, 2018; 13 (1): e0191751.                                                          


Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts., Lametschwandtner A., J Morphol. January 1, 2018; 279 (7): 950-969.                                                                                              


Interaction of the α7-nicotinic subunit with its human-specific duplicated dupα7 isoform in mammalian cells: Relevance in human inflammatory responses., Maldifassi MC., J Biol Chem. January 1, 2018; 293 (36): 13874-13888.


Ras-dva small GTPases lost during evolution of amniotes regulate regeneration in anamniotes., Ivanova AS., Sci Rep. January 1, 2018; 8 (1): 13035.                                                    


Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt and FGF signaling., Watanabe T., Genesis. October 31, 2017; .


Endocrine disruption by environmental gestagens in amphibians - A short review supported by new in vitro data using gonads of Xenopus laevis., Ziková A., Chemosphere. August 1, 2017; 181 74-82.


Digital dissection of the model organism Xenopus laevis using contrast-enhanced computed tomography., Porro LB., J Anat. August 1, 2017; 231 (2): 169-191.                        


The heterochronic gene Lin28 regulates amphibian metamorphosis through disturbance of thyroid hormone function., Faunes F., Dev Biol. May 15, 2017; 425 (2): 142-151.                        


Diclofenac can exhibit estrogenic modes of action in male Xenopus laevis, and affects the hypothalamus-pituitary-gonad axis and mating vocalizations., Efosa NJ., Chemosphere. April 1, 2017; 173 69-77.


Disrupting effects of azocyclotin to the hypothalamo-pituitary-gonadal axis and reproduction of Xenopus laevis., Li S., Aquat Toxicol. April 1, 2017; 185 121-128.


Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation., Bertolesi GE., Pigment Cell Melanoma Res. January 1, 2017; 30 (4): 413-423.


Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes., Hockman D., Elife. January 1, 2017; 6                 


Mouth development., Chen J., Wiley Interdiscip Rev Dev Biol. January 1, 2017; 6 (5):               


Mutations underlying Episodic Ataxia type-1 antagonize Kv1.1 RNA editing., Ferrick-Kiddie EA., Sci Rep. January 1, 2017; 7 41095.            


The synthetic gestagen levonorgestrel directly affects gene expression in thyroid and pituitary glands of Xenopus laevis tadpoles., Lorenz C., Aquat Toxicol. August 1, 2016; 177 63-73.


Waterborne exposure to triadimefon causes thyroid endocrine disruption and developmental delay in Xenopus laevis tadpoles., Li M., Aquat Toxicol. August 1, 2016; 177 190-7.


Metabolic cost of osmoregulation in a hypertonic environment in the invasive African clawed frog Xenopus laevis., Peña-Villalobos I., Biol Open. July 15, 2016; 5 (7): 955-61.    


Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles., Currie SP., Proc Natl Acad Sci U S A. May 24, 2016; 113 (21): 6053-8.                      


Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light., Bertolesi GE., Pigment Cell Melanoma Res. March 1, 2016; 29 (2): 186-98.


Trialkyltin Rexinoid-X Receptor Agonists Selectively Potentiate Thyroid Hormone Induced Programs of Xenopus laevis Metamorphosis., Mengeling BJ., Endocrinology. January 1, 2016; 157 (7): 2712-23.


Serotonergic regulation of melanocyte conversion: A bioelectrically regulated network for stochastic all-or-none hyperpigmentation., Lobikin M., Sci Signal. October 6, 2015; 8 (397): ra99.


Expression of the cyp19a1 gene in the adult brain of Xenopus is neuronal and not sexually dimorphic., Coumailleau P., Gen Comp Endocrinol. September 15, 2015; 221 203-12.        


Melanopsin photoreception in the eye regulates light-induced skin colour changes through the production of α-MSH in the pituitary gland., Bertolesi GE., Pigment Cell Melanoma Res. September 1, 2015; 28 (5): 559-71.


Validation of computer-assisted sperm-motility analysis in the amphibian Silurana tropicalis., Larroze S., Reprod Fertil Dev. September 1, 2015; 27 (7): 1049-56.


Functional Pairing of Class B1 Ligand-GPCR in Cephalochordate Provides Evidence of the Origin of PTH and PACAP/Glucagon Receptor Family., On JS., Mol Biol Evol. August 1, 2015; 32 (8): 2048-59.


Development of Automated Patch Clamp Assay for Evaluation of α7 Nicotinic Acetylcholine Receptor Agonists in Automated QPatch-16., Hao Y., Assay Drug Dev Technol. April 1, 2015; 13 (3): 174-84.

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next