Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (18) Expression Attributions Wiki
XB-ANAT-189

Papers associated with middle ear

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes., Neal SJ., J Exp Zool B Mol Dev Evol. October 13, 2023;             


Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates., Baxi AB., iScience. September 15, 2023; 26 (9): 107665.                          


Normal development in Xenopus laevis: A complementary staging table for the skull based on cartilage and bone., MacKenzie EM., Dev Dyn. August 1, 2022; 251 (8): 1340-1356.          


Using Xenopus to analyze neurocristopathies like Kabuki syndrome., Schwenty-Lara J., Genesis. February 1, 2021; 59 (1-2): e23404.      


The nuclease FAN1 is involved in DNA crosslink repair in Arabidopsis thaliana independently of the nuclease MUS81., Herrmann NJ., Nucleic Acids Res. April 20, 2015; 43 (7): 3653-66.              


The frog inner ear: picture perfect?, Mason MJ., J Assoc Res Otolaryngol. April 1, 2015; 16 (2): 171-88.


A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements., Square T., Dev Biol. January 15, 2015; 397 (2): 293-304.                                            


Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy., Simons C., Nat Genet. January 1, 2015; 47 (1): 73-7.      


Evolutionary innovation and conservation in the embryonic derivation of the vertebrate skull., Piekarski N., Nat Commun. December 1, 2014; 5 5661.                


Identification and characterization of plant Haspin kinase as a histone H3 threonine kinase., Kurihara D., BMC Plant Biol. April 28, 2011; 11 73.              


Developmental expression of retinoic acid receptors (RARs)., Dollé P., Nucl Recept Signal. May 12, 2009; 7 e006.            


STRUCTURE AND FUNCTION OF THE MIDDLE EAR APPARATUS OF THE AQUATIC FROG, XENOPUS LAEVIS., Mason M., Proc Inst Acoust. January 1, 2009; 31 13-21.


Mechanics of the exceptional anuran ear., Schoffelen RL., J Comp Physiol A Neuroethol Sens Neural Behav Physiol. May 1, 2008; 194 (5): 417-28.          


Influence of gain of function epithelial chloride channel ClC-Kb mutation on hearing thresholds., Frey A., Hear Res. April 1, 2006; 214 (1-2): 68-75.


Auditory brainstem responses to airborne sounds in the aquatic frog Xenopus laevis: correlation with middle ear characteristics., Katbamna B., J Comp Physiol A Neuroethol Sens Neural Behav Physiol. April 1, 2006; 192 (4): 381-7.


Distortion product otoacoustic emissions in frogs: correlation with middle and inner ear properties., van Dijk P., Hear Res. November 1, 2002; 173 (1-2): 100-8.


Biophysics of underwater hearing in the clawed frog, Xenopus laevis., Christensen-Dalsgaard J., J Comp Physiol A. March 1, 1995; 176 (3): 317-24.


Biophysics of underwater hearing in anuran amphibians., Hetherington TE., J Exp Biol. June 1, 1982; 98 49-66.

???pagination.result.page??? 1