Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1294) Expression Attributions Wiki
XB-ANAT-207

Papers associated with ganglion (and sox3)

Limit to papers also referencing gene:
Show all ganglion papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis., Saumweber E., Front Cell Dev Biol. January 1, 2024; 12 1316048.                            


Ndst1, a heparan sulfate modification enzyme, regulates neuroectodermal patterning by enhancing Wnt signaling in Xenopus., Yamamoto T., Dev Growth Differ. April 1, 2023; 65 (3): 153-160.              


Functions of block of proliferation 1 during anterior development in Xenopus laevis., Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.                        


Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm., Tsukano K., Dev Biol. August 1, 2022; 488 81-90.                          


Influence of Sox protein SUMOylation on neural development and regeneration., Chang KC., Neural Regen Res. March 1, 2022; 17 (3): 477-481.      


The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways., Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.                        


Retinol binding protein 1 affects Xenopus anterior neural development via all-trans retinoic acid signaling., Flach H., Dev Dyn. August 1, 2021; 250 (8): 1096-1112.                


Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1., Almasoudi SH., Front Neuroanat. January 1, 2021; 15 722374.                                                    


Interplay of TRIM2 E3 Ubiquitin Ligase and ALIX/ESCRT Complex: Control of Developmental Plasticity During Early Neurogenesis., Lokapally A., Cells. July 20, 2020; 9 (7):                                           


Model systems for regeneration: Xenopus., Phipps LS., Development. March 19, 2020; 147 (6):           


Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development., Kim Y., Epigenetics Chromatin. December 6, 2018; 11 (1): 72.                


Nosip functions during vertebrate eye and cranial cartilage development., Flach H., Dev Dyn. September 1, 2018; 247 (9): 1070-1082.                


A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis., Maharana SK., BMC Biol. July 16, 2018; 16 (1): 79.                            


Frizzled 3 acts upstream of Alcam during embryonic eye development., Seigfried FA., Dev Biol. June 1, 2017; 426 (1): 69-83.                        


The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis., Kiem LM., Dev Biol. March 1, 2017; 423 (1): 66-76.                            


An Epha4/Sipa1l3/Wnt pathway regulates eye development and lens maturation., Rothe M., Development. January 15, 2017; 144 (2): 321-333.                              


Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes., Riddiford N., Elife. August 31, 2016; 5                                                                         


The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning., Schlosser G., Dev Biol. May 1, 2014; 389 (1): 98-119.            


The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube., Hanotel J., Dev Biol. February 15, 2014; 386 (2): 340-57.                                                                    


Early embryonic specification of vertebrate cranial placodes., Schlosser G., Wiley Interdiscip Rev Dev Biol. January 1, 2014; 3 (5): 349-63.


sox4 and sox11 function during Xenopus laevis eye development., Cizelsky W., PLoS One. July 1, 2013; 8 (7): e69372.              


Molecular evolution of vertebrate sex-determining genes., Mawaribuchi S., Chromosome Res. January 1, 2012; 20 (1): 139-51.          


The homeobox leucine zipper gene Homez plays a role in Xenopus laevis neurogenesis., Ghimouz R., Biochem Biophys Res Commun. November 11, 2011; 415 (1): 11-6.            


Expression of periostin during Xenopus laevis embryogenesis., Tao S., Dev Genes Evol. October 1, 2011; 221 (4): 247-54.


Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells., Nie S., Dev Biol. November 1, 2009; 335 (1): 132-42.                        


Xenopus BTBD6 and its Drosophila homologue lute are required for neuronal development., Bury FJ., Dev Dyn. November 1, 2008; 237 (11): 3352-60.              


Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion., Schlosser G., Dev Biol. August 1, 2008; 320 (1): 199-214.                  


A dominant-negative form of the E3 ubiquitin ligase Cullin-1 disrupts the correct allocation of cell fate in the neural crest lineage., Voigt J., Development. February 1, 2006; 133 (3): 559-68.      


Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis., Ahrens K., Dev Biol. December 1, 2005; 288 (1): 40-59.            


Xenopus Id3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells., Light W., Development. April 1, 2005; 132 (8): 1831-41.              


Inhibition of neurogenesis by SRp38, a neuroD-regulated RNA-binding protein., Liu KJ, Liu KJ., Development. April 1, 2005; 132 (7): 1511-23.                


Global analysis of RAR-responsive genes in the Xenopus neurula using cDNA microarrays., Arima K., Dev Dyn. February 1, 2005; 232 (2): 414-31.                          


Systematic screening for genes specifically expressed in the anterior neuroectoderm during early Xenopus development., Takahashi N., Int J Dev Biol. January 1, 2005; 49 (8): 939-51.                                    


Molecular anatomy of placode development in Xenopus laevis., Schlosser G., Dev Biol. July 15, 2004; 271 (2): 439-66.                          


XETOR regulates the size of the proneural domain during primary neurogenesis in Xenopus laevis., Cao Y., Mech Dev. November 1, 2002; 119 (1): 35-44.                      


foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain., Sullivan SA., Dev Biol. April 15, 2001; 232 (2): 439-57.            


Xenopus Six1 gene is expressed in neurogenic cranial placodes and maintained in the differentiating lateral lines., Pandur PD., Mech Dev. September 1, 2000; 96 (2): 253-7.    

???pagination.result.page??? 1