Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14667) Expression Attributions Wiki
XB-ANAT-213

Papers associated with central nervous system (and myc)

Limit to papers also referencing gene:
Show all central nervous system papers
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders., Kaiyrzhanov R., Brain. April 4, 2024; 147 (4): 1436-1456.                            


The Molecular Mechanism of Body Axis Induction in Lampreys May Differ from That in Amphibians., Ermakova GV., Int J Mol Sci. February 19, 2024; 25 (4):         


ZSWIM4 regulates embryonic patterning and BMP signaling by promoting nuclear Smad1 degradation., Wang C., EMBO Rep. February 1, 2024; 25 (2): 646-671.                                          


Mechanical control of neural plate folding by apical domain alteration., Matsuda M., Nat Commun. December 20, 2023; 14 (1): 8475.                                    


The USP46 complex deubiquitylates LRP6 to promote Wnt/β-catenin signaling., Ng VH., Nat Commun. October 5, 2023; 14 (1): 6173.                                


Characteristic tetraspanin expression patterns mark various tissues during early Xenopus development., Kuriyama S., Dev Growth Differ. February 1, 2023; 65 (2): 109-119.                


maea affects head formation through ß-catenin degradation during early Xenopus laevis development., Goto T., Dev Growth Differ. January 1, 2023; 65 (1): 29-36.                  


Metamorphic gene regulation programs in Xenopus tropicalis tadpole brain., Raj S., PLoS One. January 1, 2023; 18 (6): e0287858.                


Regulation of gene expression downstream of a novel Fgf/Erk pathway during Xenopus development., Cowell LM., PLoS One. January 1, 2023; 18 (10): e0286040.                                  


Zmym4 is required for early cranial gene expression and craniofacial cartilage formation., Jourdeuil K., Front Cell Dev Biol. January 1, 2023; 11 1274788.          


Functions of block of proliferation 1 during anterior development in Xenopus laevis., Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.                        


HMCES modulates the transcriptional regulation of nodal/activin and BMP signaling in mESCs., Liang T., Cell Rep. July 12, 2022; 40 (2): 111038.                              


The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways., Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.                        


Function of chromatin modifier Hmgn1 during neural crest and craniofacial development., Ihewulezi C., Genesis. October 1, 2021; 59 (10): e23447.              


Fosl1 is vital to heart regeneration upon apex resection in adult Xenopus tropicalis., Wu HY., NPJ Regen Med. June 29, 2021; 6 (1): 36.                    


Biallelic variants in COPB1 cause a novel, severe intellectual disability syndrome with cataracts and variable microcephaly., Macken WL., Genome Med. February 25, 2021; 13 (1): 34.            


Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds., Kowalczyk I., Development. January 26, 2021; 148 (2):                                   


STRAP regulates alternative splicing fidelity during lineage commitment of mouse embryonic stem cells., Jin L., Nat Commun. November 23, 2020; 11 (1): 5941.                


TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis., Chen M., Elife. September 14, 2020; 9                                                                                           


Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development., Shah AM., Dis Model Mech. March 3, 2020; 13 (3):                                               


miR-199 plays both positive and negative regulatory roles in Xenopus eye development., Ritter RA., Genesis. March 1, 2020; 58 (3-4): e23354.                        


The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer., Chang LS., Elife. January 14, 2020; 9                                                                                               


Bioinformatics Screening of Genes Specific for Well-Regenerating Vertebrates Reveals c-answer, a Regulator of Brain Development and Regeneration., Korotkova DD., Cell Rep. October 22, 2019; 29 (4): 1027-1040.e6.                              


Nervous NDRGs: the N-myc downstream-regulated gene family in the central and peripheral nervous system., Schonkeren SL., Neurogenetics. October 1, 2019; 20 (4): 173-186.      


Barhl2 maintains T cell factors as repressors and thereby switches off the Wnt/β-Catenin response driving Spemann organizer formation., Sena E., Development. May 22, 2019; 146 (10):                                             


A deficiency in SUMOylation activity disrupts multiple pathways leading to neural tube and heart defects in Xenopus embryos., Bertke MM., BMC Genomics. May 17, 2019; 20 (1): 386.              


The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism., Yang JJ., eNeuro. April 9, 2019; 6 (2):                   


Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor., Jalvy S., Dev Biol. March 15, 2019; 447 (2): 200-213.                                  


Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation., Sullivan CH., Dev Biol. February 1, 2019; 446 (1): 68-79.                      


Arid3a regulates nephric tubule regeneration via evolutionarily conserved regeneration signal-response enhancers., Suzuki N., Elife. January 8, 2019; 8                                             


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.                      


Fam46a regulates BMP-dependent pre-placodal ectoderm differentiation in Xenopus., Watanabe T., Development. October 26, 2018; 145 (20):                                     


Influenza D virus M2 protein exhibits ion channel activity in Xenopus laevis oocytes., Kesinger E., PLoS One. June 21, 2018; 13 (6): e0199227.            


The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture., Takahashi C., J Biol Chem. June 1, 2018; 293 (22): 8342-8361.                                      


C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis., Moore KB., Dev Biol. May 1, 2018; 437 (1): 27-40.                  


Pitx1 regulates cement gland development in Xenopus laevis through activation of transcriptional targets and inhibition of BMP signaling., Jin Y., Dev Biol. May 1, 2018; 437 (1): 41-49.          


MicroRNA-31 is required for astrocyte specification., Meares GP., Glia. May 1, 2018; 66 (5): 987-998.


Head formation requires Dishevelled degradation that is mediated by March2 in concert with Dapper1., Lee H, Lee H., Development. April 10, 2018; 145 (7):               


Xenopus ADAM19 regulates Wnt signaling and neural crest specification by stabilizing ADAM13., Li J., Development. April 4, 2018; 145 (7):                         


Coordinated regulation of the dorsal-ventral and anterior-posterior patterning of Xenopus embryos by the BTB/POZ zinc finger protein Zbtb14., Takebayashi-Suzuki K., Dev Growth Differ. April 1, 2018; 60 (3): 158-173.          


Phosphorylation states change Otx2 activity for cell proliferation and patterning in the Xenopus embryo., Satou Y., Development. March 12, 2018; 145 (5):                             


Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus., Gentsch GE., Dev Cell. March 12, 2018; 44 (5): 597-610.e10.                                            


Neural crest development in Xenopus requires Protocadherin 7 at the lateral neural crest border., Bradley RS., Mech Dev. February 1, 2018; 149 41-52.                


HMG-box factor SoxD/Sox15 and homeodomain-containing factor Xanf1/Hesx1 directly interact and regulate the expression of Xanf1/Hesx1 during early forebrain development in Xenopus laevis., Martynova NY., Gene. January 5, 2018; 638 52-59.      


PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation., Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.                                


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 19, 2017; 15 (10): e2004045.                                              


Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration., Simon E., Biol Open. October 15, 2017; 6 (10): 1528-1540.                                  


Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover., Kirsch N., Dev Cell. October 9, 2017; 43 (1): 71-82.e6.                                


The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus., Zhu X., Mech Dev. October 1, 2017; 147 28-36.              


ZC4H2 stabilizes Smads to enhance BMP signalling, which is involved in neural development in Xenopus., Ma P., Open Biol. August 1, 2017; 7 (8):                           

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???