Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (59) Expression Attributions Wiki

Papers associated with dermis

Limit to papers also referencing gene:
Results 1 - 50 of 59 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Review: Examining the Natural Role of Amphibian Antimicrobial Peptide Magainin., McMillan KAM., Molecules. November 20, 2020; 25 (22):           

Insights regarding skin regeneration in non-amniote vertebrates: Skin regeneration without scar formation and potential step-up to a higher level of regeneration., Abe G., Semin Cell Dev Biol. January 1, 2020; 100 109-121.

Anatomical and histological analyses reveal that tail repair is coupled with regrowth in wild-caught, juvenile American alligators (Alligator mississippiensis)., Xu C., Sci Rep. January 1, 2020; 10 (1): 20122.                

More Than Just a Bandage: Closing the Gap Between Injury and Appendage Regeneration., Kakebeen AD., Front Physiol. January 1, 2019; 10 81.      

Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs., Sonam S., Exp Eye Res. January 1, 2019; 184 107-125.                        

Cdc42 Effector Protein 3 Interacts With Cdc42 in Regulating Xenopus Somite Segmentation., Kho M., Front Physiol. January 1, 2019; 10 542.          

Skin regeneration of amphibians: A novel model for skin regeneration as adults., Yokoyama H., Dev Growth Differ. August 1, 2018; 60 (6): 316-325.      

Review of the Amphibian Immune Response to Chytridiomycosis, and Future Directions., Grogan LF., Front Immunol. January 1, 2018; 9 2536.    

Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens., Varga JFA., Front Immunol. January 1, 2018; 9 3128.  

A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors., Bryant DM., Cell Rep. January 17, 2017; 18 (3): 762-776.                          

Cells from subcutaneous tissues contribute to scarless skin regeneration in Xenopus laevis froglets., Otsuka-Yamaguchi R., Dev Dyn. January 1, 2017; 246 (8): 585-597.              

A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts., Tanaka HV., Nat Commun. April 11, 2016; 7 11069.        

Collagenoma in an African Clawed Frog (Xenopus laevis)., Johnston JM., Comp Med. February 1, 2016; 66 (1): 21-4.

A Novel Role for VICKZ Proteins in Maintaining Epithelial Integrity during Embryogenesis., Carmel MS., PLoS One. January 1, 2015; 10 (8): e0136408.              

The roles of Frizzled-3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines., Chang CH., J Dermatol Sci. August 1, 2014; 75 (2): 100-8.

Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis., Curran KL., PLoS One. January 1, 2014; 9 (9): e108266.                            

Skin wound healing in different aged Xenopus laevis., Bertolotti E., J Morphol. August 1, 2013; 274 (8): 956-64.

Expression of the amelogenin gene in the skin of Xenopus tropicalis., Okada M., Zoolog Sci. March 1, 2013; 30 (3): 154-9.  

Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin., Meier NT., PLoS One. January 1, 2013; 8 (9): e73596.                

Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates., Seifert AW., PLoS One. January 1, 2012; 7 (4): e32875.                      

Prx-1 expression in Xenopus laevis scarless skin-wound healing and its resemblance to epimorphic regeneration., Yokoyama H., J Invest Dermatol. December 1, 2011; 131 (12): 2477-85.                        

Integument structure and function in juvenile Xenopus laevis with disrupted thyroid balance., Carvalho ES., Gen Comp Endocrinol. December 1, 2011; 174 (3): 301-8.        

The cellular basis for animal regeneration., Tanaka EM., Dev Cell. July 19, 2011; 21 (1): 172-85.  

Different requirement for Wnt/β-catenin signaling in limb regeneration of larval and adult Xenopus., Yokoyama H., PLoS One. January 1, 2011; 6 (7): e21721.                

Mutations in PYCR1 cause cutis laxa with progeroid features., Reversade B., Nat Genet. September 1, 2009; 41 (9): 1016-21.        

Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells., Morokuma J., Proc Natl Acad Sci U S A. October 28, 2008; 105 (43): 16608-13.                                  

Concealed weapons: erectile claws in African frogs., Blackburn DC., Biol Lett. August 23, 2008; 4 (4): 355-7.

Identification of genes associated with regenerative success of Xenopus laevis hindlimbs., Pearl EJ., BMC Dev Biol. July 28, 2008; 8 66.              

Initiation of limb regeneration: the critical steps for regenerative capacity., Yokoyama H., Dev Growth Differ. January 1, 2008; 50 (1): 13-22.          

Old wares and new: five decades of investigation of somitogenesis in Xenopus laevis., Sparrow DB., Adv Exp Med Biol. January 1, 2008; 638 73-94.

Amphibian metamorphosis., Brown DD., Dev Biol. June 1, 2007; 306 (1): 20-33.          

Cell behaviors associated with somite segmentation and rotation in Xenopus laevis., Afonin B., Dev Dyn. December 1, 2006; 235 (12): 3268-79.                

Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo., Aspengren S., Pigment Cell Res. April 1, 2006; 19 (2): 136-45.

Analysis of scleraxis and dermo-1 genes in a regenerating limb of Xenopus laevis., Satoh A., Dev Dyn. April 1, 2006; 235 (4): 1065-73.      

Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration., Suzuki M., Dev Biol. October 1, 2005; 286 (1): 361-75.              

Frog melanophores cultured on fluorescent microbeads: biomimic-based biosensing., Andersson TP., Biosens Bioelectron. July 15, 2005; 21 (1): 111-20.

Spatial and temporal expression patterns of Xenopus Nkx-2.3 gene in skin epidermis during metamorphosis., Ma CM., Gene Expr Patterns. November 1, 2004; 5 (1): 129-34.  

Helix stability confers salt resistance upon helical antimicrobial peptides., Park IY., J Biol Chem. April 2, 2004; 279 (14): 13896-901.

A Notch feeling of somite segmentation and beyond., Rida PC., Dev Biol. January 1, 2004; 265 (1): 2-22.

Platelet-derived growth factor signaling as a cue of the epithelial-mesenchymal interaction required for anuran skin metamorphosis., Utoh R., Dev Dyn. June 1, 2003; 227 (2): 157-69.              

Tadpole skin dies autonomously in response to thyroid hormone at metamorphosis., Schreiber AM., Proc Natl Acad Sci U S A. February 18, 2003; 100 (4): 1769-74.          

Ontogenic emergence and localization of larval skin antigen molecule recognized by adult T cells of Xenopus laevis: Regulation by thyroid hormone during metamorphosis., Watanabe M., Dev Growth Differ. February 1, 2003; 45 (1): 77-84.        

Larval antigen molecules recognized by adult immune cells of inbred Xenopus laevis: partial characterization and implication in metamorphosis., Izutsu Y., Dev Growth Differ. December 1, 2002; 44 (6): 477-88.            

Volume changes of individual melanosomes measured by scanning force microscopy., Testorf MF., Pigment Cell Res. December 1, 2001; 14 (6): 445-9.

Extent of ossification at the amputation plane is correlated with the decline of blastema formation and regeneration in Xenopus laevis hindlimbs., Wolfe AD., Dev Dyn. August 1, 2000; 218 (4): 681-97.        

Expression and characterization of Xenopus type I collagen alpha 1 (COL1A1) during embryonic development., Goto T., Dev Growth Differ. June 1, 2000; 42 (3): 249-56.        

Larval antigen molecules recognized by adult immune cells of inbred Xenopus laevis: two pathways for recognition by adult splenic T cells., Izutsu Y., Dev Biol. May 15, 2000; 221 (2): 365-74.          

Analysis of gene expressions during Xenopus forelimb regeneration., Endo T., Dev Biol. April 15, 2000; 220 (2): 296-306.          

The expression pattern of thyroid hormone response genes in the tadpole tail identifies multiple resorption programs., Berry DL., Dev Biol. November 1, 1998; 203 (1): 12-23.                

Putative hyaluronan synthase mRNA are expressed in mouse skin and TGF-beta upregulates their expression in cultured human skin cells., Sugiyama Y., J Invest Dermatol. February 1, 1998; 110 (2): 116-21.

Page(s): 1 2 Next