Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6354) Expression Attributions Wiki
XB-ANAT-254

Papers associated with oocyte (and cftr)

Limit to papers also referencing gene:
Show all oocyte papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

FXYD protein isoforms differentially modulate human Na/K pump function., Meyer DJ., J Gen Physiol. December 7, 2020; 152 (12):                         


The Epithelial Sodium Channel Is a Modifier of the Long-Term Nonprogressive Phenotype Associated with F508del CFTR Mutations., Agrawal PB., Am J Respir Cell Mol Biol. December 1, 2017; 57 (6): 711-720.


Mammalian odorant receptor tuning breadth persists across distinct odorant panels., Kepchia D., PLoS One. September 8, 2017; 12 (9): e0185329.          


Hydrogen sulfide stimulates CFTR in Xenopus oocytes by activation of the cAMP/PKA signalling axis., Perniss A., Sci Rep. June 14, 2017; 7 (1): 3517.        


Bacterial Sphingomyelinase is a State-Dependent Inhibitor of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR)., Stauffer BB., Sci Rep. June 7, 2017; 7 (1): 2931.                


ANP and CNP activate CFTR expressed in Xenopus laevis oocytes by direct activation of PKA., Stahl K., J Recept Signal Transduct Res. January 1, 2015; 35 (5): 493-504.


Counteracting suppression of CFTR and voltage-gated K+ channels by a bacterial pathogenic factor with the natural product tannic acid., Ramu Y., Elife. October 14, 2014; 3 e03683.        


Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators protect G551D but not ΔF508 CFTR from thermal instability., Liu X., Biochemistry. September 9, 2014; 53 (35): 5613-8.        


Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR., Cui G., J Gen Physiol. August 1, 2014; 144 (2): 159-79.                          


Discovery of novel ligands for mouse olfactory receptor MOR42-3 using an in silico screening approach and in vitro validation., Bavan S., PLoS One. January 1, 2014; 9 (3): e92064.            


The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation., Rode B., Hum Mol Genet. March 15, 2012; 21 (6): 1287-98.


Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101., Stahl M., Am J Physiol Cell Physiol. January 1, 2012; 302 (1): C67-76.


Functional interaction between CFTR and the sodium-phosphate co-transport type 2a in Xenopus laevis oocytes., Bakouh N., PLoS One. January 1, 2012; 7 (4): e34879.                


The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility., Abaffy T., BMC Res Notes. May 6, 2011; 4 137.        


Native and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl-/1HCO3- exchange., Alper SL., Am J Physiol Cell Physiol. February 1, 2011; 300 (2): C276-86.


Stimulating effect of external Myo-inositol on the expression of mutant forms of aquaporin 2., Lussier Y., J Membr Biol. July 1, 2010; 236 (2): 225-32.


Metformin treatment of diabetes mellitus increases the risk for pancreatitis in patients bearing the CFTR-mutation S573C., Kongsuphol P., Cell Physiol Biochem. January 1, 2010; 25 (4-5): 389-96.


Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore., Alexander C., Biochemistry. October 27, 2009; 48 (42): 10078-88.                


Abnormal regulatory interactions of I148T-CFTR and the epithelial Na+ channel in Xenopus oocytes., Suaud L., Am J Physiol Cell Physiol. January 1, 2007; 292 (1): C603-11.


Anion exchangers in flux: functional differences between human and mouse SLC26A6 polypeptides., Alper SL., Novartis Found Symp. January 1, 2006; 273 107-19; discussion 119-25, 261-4.


Interplay between cystic fibrosis transmembrane regulator and gap junction channels made of connexins 45, 40, 32 and 50 expressed in oocytes., Kotsias BA., J Membr Biol. January 1, 2006; 214 (1): 1-8.


An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery., Oberdorf J., J Biol Chem. November 18, 2005; 280 (46): 38193-202.


CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes., Nagel G., J Physiol. May 1, 2005; 564 (Pt 3): 671-82.


Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA., Csanády L., J Gen Physiol. February 1, 2005; 125 (2): 171-86.                  


ClC-5 chloride channel alters expression of the epithelial sodium channel (ENaC)., Mo L., J Membr Biol. November 1, 2004; 202 (1): 21-37.


Involvement of G protein betagamma-subunits in diverse signaling induced by G(i/o)-coupled receptors: study using the Xenopus oocyte expression system., Uezono Y., Am J Physiol Cell Physiol. October 1, 2004; 287 (4): C885-94.


Identification and characterization of evolutionarily conserved pufferfish, zebrafish, and frog orthologs of GASZ., Yan W., Biol Reprod. June 1, 2004; 70 (6): 1619-25.  


Cystic fibrosis transmembrane conductance regulator differentially regulates human and mouse epithelial sodium channels in Xenopus oocytes., Yan W., J Biol Chem. May 28, 2004; 279 (22): 23183-92.


Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating., Basso C., J Gen Physiol. September 1, 2003; 122 (3): 333-48.                


Synergistic effects of cystic fibrosis transmembrane conductance regulator and aquaporin-9 in the rat epididymis., Cheung KH., Biol Reprod. May 1, 2003; 68 (5): 1505-10.


Release of ATP induced by hypertonic solutions in Xenopus oocytes., Aleu J., J Physiol. February 15, 2003; 547 (Pt 1): 209-19.


Genistein improves regulatory interactions between G551D-cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel in Xenopus oocytes., Suaud L., J Biol Chem. December 27, 2002; 277 (52): 50341-7.


No evidence for inhibition of ENaC through CFTR-mediated release of ATP., König J., Biochim Biophys Acta. September 20, 2002; 1565 (1): 17-28.                  


Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator., Zhang H., J Biol Chem. August 9, 2002; 277 (32): 28948-58.                    


Genistein restores functional interactions between Delta F508-CFTR and ENaC in Xenopus oocytes., Suaud L., J Biol Chem. March 15, 2002; 277 (11): 8928-33.


Different activation mechanisms of cystic fibrosis transmembrane conductance regulator expressed in Xenopus laevis oocytes., Webe WM., Comp Biochem Physiol A Mol Integr Physiol. October 1, 2001; 130 (3): 521-31.


CFTR: covalent modification of cysteine-substituted channels expressed in Xenopus oocytes shows that activation is due to the opening of channels resident in the plasma membrane., Liu X., J Gen Physiol. October 1, 2001; 118 (4): 433-46.                  


CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction., Smith SS., J Gen Physiol. October 1, 2001; 118 (4): 407-31.                                      


Effects of 8-cpt-cAMP on the epithelial sodium channel expressed in Xenopus oocytes., Chraïbi A., J Membr Biol. September 1, 2001; 183 (1): 15-23.


PKC-mediated stimulation of amphibian CFTR depends on a single phosphorylation consensus site. insertion of this site confers PKC sensitivity to human CFTR., Button B., J Gen Physiol. May 1, 2001; 117 (5): 457-68.                    


Functional integrity of the vesicle transporting machinery is required for complete activation of cFTR expressed in xenopus laevis oocytes., Weber WM., Pflugers Arch. March 1, 2001; 441 (6): 850-9.


Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis., Wagner CA., Cell Physiol Biochem. January 1, 2001; 11 (4): 209-18.


Anion permeation in Ca(2+)-activated Cl(-) channels., Qu Z., J Gen Physiol. December 1, 2000; 116 (6): 825-44.                          


Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains., Csanády L., J Gen Physiol. September 1, 2000; 116 (3): 477-500.                          


Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain., Chan KW., J Gen Physiol. August 1, 2000; 116 (2): 163-80.                          


Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase., Müllner C., J Gen Physiol. May 1, 2000; 115 (5): 547-58.              


Syntaxin 1A is expressed in airway epithelial cells, where it modulates CFTR Cl(-) currents., Naren AP., J Clin Invest. February 1, 2000; 105 (3): 377-86.


Cystic fibrosis transmembrane conductance regulator. Physical basis for lyotropic anion selectivity patterns., Smith SS., J Gen Physiol. December 1, 1999; 114 (6): 799-818.                


Capacitance measurements reveal different pathways for the activation of CFTR., Weber WM., Pflugers Arch. September 1, 1999; 438 (4): 561-9.


Downregulation of epithelial sodium channel (ENaC) by CFTR co-expressed in Xenopus oocytes is independent of Cl- conductance., Chabot H., J Membr Biol. June 1, 1999; 169 (3): 175-88.

???pagination.result.page??? 1 2 ???pagination.result.next???