Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (127) Attributions Wiki
XB-STAGE-3

Papers associated with NF stage 1

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Exosomal trafficking in Xenopus development., Danilchik M, Tumarkin T., Genesis. January 1, 2017; 55 (1-2):           


Gamma-tubulin coordinates nuclear envelope assembly around chromatin., Rosselló CA, Lindström L, Glindre J, Eklund G, Alvarado-Kristensson M., Heliyon. September 24, 2016; 2 (9): e00166.                                        


Proteomics of Xenopus development., Sun L, Champion MM, Huber PW, Dovichi NJ., Mol Hum Reprod. March 1, 2016; 22 (3): 193-9.


Nearly 1000 Protein Identifications from 50 ng of Xenopus laevis Zygote Homogenate Using Online Sample Preparation on a Strong Cation Exchange Monolith Based Microreactor Coupled with Capillary Zone Electrophoresis., Zhang Z, Sun L, Zhu G, Cox OF, Huber PW, Dovichi NJ., Anal Chem. January 5, 2016; 88 (1): 877-82.


Histone H3 lysine 9 trimethylation is required for suppressing the expression of an embryonically activated retrotransposon in Xenopus laevis., Herberg S, Simeone A, Oikawa M, Jullien J, Bradshaw CR, Teperek M, Gurdon J, Miyamoto K., Sci Rep. September 21, 2015; 5 14236.        


Protein-Carbohydrate Interaction between Sperm and the Egg-Coating Envelope and Its Regulation by Dicalcin, a Xenopus laevis Zona Pellucida Protein-Associated Protein., Miwa N., Molecules. May 22, 2015; 20 (5): 9468-86.      


The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation., Olson DJ, Oh D, Houston DW., Dev Biol. May 15, 2015; 401 (2): 249-63.                


Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos., Chernet BT, Fields C, Levin M., Front Physiol. January 19, 2015; 5 519.                


Microtubule nucleation remote from centrosomes may explain how asters span large cells., Ishihara K, Nguyen PA, Groen AC, Field CM, Mitchison TJ., Proc Natl Acad Sci U S A. December 16, 2014; 111 (50): 17715-22.              


Expression analysis of integrin β1 isoforms during zebrafish embryonic development., Wang X, Li L, Liu D., Gene Expr Patterns. November 1, 2014; 16 (2): 86-92.


Getting to know your neighbor: cell polarization in early embryos., Nance J., J Cell Biol. September 29, 2014; 206 (7): 823-32.          


Symmetry breakage in the vertebrate embryo: when does it happen and how does it work?, Blum M, Schweickert A, Vick P, Wright CV, Danilchik MV., Dev Biol. September 1, 2014; 393 (1): 109-23.          


Heparanase 2, mutated in urofacial syndrome, mediates peripheral neural development in Xenopus., Roberts NA, Woolf AS, Stuart HM, Thuret R, McKenzie EA, Newman WG, Hilton EN., Hum Mol Genet. August 15, 2014; 23 (16): 4302-14.                              


Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos., Kirmizitas A, Gillis WQ, Zhu H, Thomsen GH., Dev Biol. August 15, 2014; 392 (2): 358-67.                                


The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling., Jacox L, Sindelka R, Chen J, Rothman A, Dickinson A, Sive H., Cell Rep. July 24, 2014; 8 (2): 596-609.                            


Symmetry breakage in the frog Xenopus: role of Rab11 and the ventral-right blastomere., Tingler M, Ott T, Tözser J, Kurz S, Getwan M, Tisler M, Schweickert A, Blum M., Genesis. June 1, 2014; 52 (6): 588-99.            


Quantitative proteomics of Xenopus laevis embryos: expression kinetics of nearly 4000 proteins during early development., Sun L, Bertke MM, Champion MM, Zhu G, Huber PW, Dovichi NJ., Sci Rep. February 26, 2014; 4 4365.                              


Xenopus egg cytoplasm with intact actin., Field CM, Nguyen PA, Ishihara K, Groen AC, Mitchison TJ., Methods Enzymol. January 1, 2014; 540 399-415.


23 improving efficiency in work with transfer of cloned pig embryos., Callesen H, Liu Y, Li R, Schmidt M., Reprod Fertil Dev. December 1, 2013; 26 (1): 126.


Zar1 represses translation in Xenopus oocytes and binds to the TCS in maternal mRNAs with different characteristics than Zar2., Yamamoto TM, Cook JM, Kotter CV, Khat T, Silva KD, Ferreyros M, Holt JW, Knight JD, Charlesworth A., Biochim Biophys Acta. October 1, 2013; 1829 (10): 1034-46.


Inositol-requiring enzyme 1α is required for gut development in Xenopus lavies embryos., Guo J, Li XX, Feng JJ, Yin CY, Wang XJ, Wang N, Yuan L., World J Gastroenterol. January 14, 2013; 19 (2): 227-34.              


Rab GTPases are required for early orientation of the left-right axis in Xenopus., Vandenberg LN, Morrie RD, Seebohm G, Lemire JM, Levin M., Mech Dev. January 1, 2013; 130 (4-5): 254-71.                      


Xenopus laevis zygote arrest 2 (zar2) encodes a zinc finger RNA-binding protein that binds to the translational control sequence in the maternal Wee1 mRNA and regulates translation., Charlesworth A, Yamamoto TM, Cook JM, Silva KD, Kotter CV, Carter GS, Holt JW, Lavender HF, MacNicol AM, Ying Wang Y, Wilczynska A., Dev Biol. September 15, 2012; 369 (2): 177-90.              


Xenopus Nanos1 is required to prevent endoderm gene expression and apoptosis in primordial germ cells., Lai F, Singh A, King ML., Development. April 1, 2012; 139 (8): 1476-86.                


Dynamic interactions of high Cdt1 and geminin levels regulate S phase in early Xenopus embryos., Kisielewska J, Blow JJ., Development. January 1, 2012; 139 (1): 63-74.              


Analyzing the function of a hox gene: an evolutionary approach., Michaut L, Jansen HJ, Bardine N, Durston AJ, Gehring WJ., Dev Growth Differ. December 1, 2011; 53 (9): 982-93.                  


29 treatment of donor cells with Xenopus oocyte extract enhanced somatic cell nuclear transfer embryo development., Yang X, Mao J, Walters EM, Zhao MT, Lee K, Prather RS., Reprod Fertil Dev. December 1, 2011; 24 (1): 126.


Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER)., Paix A, Le Nguyen PN, Sardet C., Dev Biol. September 1, 2011; 357 (1): 211-26.


Histone deacetylase activity is necessary for left-right patterning during vertebrate development., Carneiro K, Donnet C, Rejtar T, Karger BL, Barisone GA, Díaz E, Kortagere S, Lemire JM, Levin M., BMC Dev Biol. May 20, 2011; 11 29.              


Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition., Chen J, Melton C, Suh N, Oh JS, Horner K, Xie F, Sette C, Blelloch R, Conti M., Genes Dev. April 1, 2011; 25 (7): 755-66.


Spatio-temporal expression profile of stem cell-associated gene LGR5 in the intestine during thyroid hormone-dependent metamorphosis in Xenopus laevis., Sun G, Hasebe T, Fujimoto K, Lu R, Fu L, Matsuda H, Kajita M, Ishizuya-Oka A, Shi YB., PLoS One. October 22, 2010; 5 (10): e13605.                    


The ATP-sensitive K(+)-channel (K(ATP)) controls early left-right patterning in Xenopus and chick embryos., Aw S, Koster JC, Pearson W, Nichols CG, Shi NQ, Carneiro K, Levin M., Dev Biol. October 1, 2010; 346 (1): 39-53.        


Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality., Slavic K, Straschil U, Reininger L, Doerig C, Morin C, Tewari R, Krishna S., Mol Microbiol. March 1, 2010; 75 (6): 1402-13.              


Action at a distance during cytokinesis., von Dassow G, Verbrugghe KJ, Miller AL, Miller AL, Sider JR, Bement WM., J Cell Biol. December 14, 2009; 187 (6): 831-45.                


Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis., Vick P, Schweickert A, Weber T, Eberhardt M, Mencl S, Shcherbakov D, Beyer T, Blum M., Dev Biol. July 15, 2009; 331 (2): 281-91.                                        


Expression cloning of Xenopus zygote arrest 2 (Xzar2) as a novel epidermalization-promoting factor in early embryos of Xenopus laevis., Nakajima Y, Okamoto H, Kubo T, Kubo T., Genes Cells. May 1, 2009; 14 (5): 583-95.                    


ZFPIP/Zfp462 is maternally required for proper early Xenopus laevis development., Laurent A, Masse J, Omilli F, Deschamps S, Richard-Parpaillon L, Chartrain I, Pellerin I., Dev Biol. March 1, 2009; 327 (1): 169-76.      


Loss of REEP4 causes paralysis of the Xenopus embryo., Argasinska J, Rana AA, Gilchrist MJ, Lachani K, Young A, Smith JC., Int J Dev Biol. January 1, 2009; 53 (1): 37-43.          


Reorganisation of human sperm nuclear architecture during formation of pronuclei in a model system., Mudrak O, Chandra R, Jones E, Godfrey E, Zalensky A., Reprod Fertil Dev. January 1, 2009; 21 (5): 665-71.


Cyclin E in centrosome duplication and reduplication in sea urchin zygotes., Schnackenberg BJ, Marzluff WF, Sluder G., J Cell Physiol. December 1, 2008; 217 (3): 626-31.


HIF-1alpha signaling upstream of NKX2.5 is required for cardiac development in Xenopus., Nagao K, Taniyama Y, Kietzmann T, Doi T, Komuro I, Morishita R., J Biol Chem. April 25, 2008; 283 (17): 11841-9.                        


Motility screen identifies Drosophila IGF-II mRNA-binding protein--zipcode-binding protein acting in oogenesis and synaptogenesis., Boylan KL, Mische S, Li M, Marqués G, Morin X, Chia W, Hays TS., PLoS Genet. February 1, 2008; 4 (2): e36.          


[Detection of transcription factor Xvent-2 in early development of Xenopus laevis]., Pshennikova ES, Voronina AS., Mol Biol (Mosk). January 1, 2008; 42 (6): 1012-7.


In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards., Lee SC, Mietchen D, Cho JH, Kim YS, Kim C, Hong KS, Lee C, Lee C, Kang D, Lee W, Cheong C., Differentiation. January 1, 2007; 75 (1): 84-92.        


Soluble membrane-type 3 matrix metalloprioteinase causes changes in gene expression and increased gelatinase activity during Xenopus laevis development., Walsh LA, Cooper CA, Damjanovski S., Int J Dev Biol. January 1, 2007; 51 (5): 389-95.    


Centroid, a novel putative DEAD-box RNA helicase maternal mRNA, is localized in the mitochondrial cloud in Xenopus laevis oocytes., Kloc M, Chan AP., Int J Dev Biol. January 1, 2007; 51 (8): 701-6.      


Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left-right asymmetry?, Danilchik MV, Brown EE, Brown EE, Riegert K., Development. November 1, 2006; 133 (22): 4517-26.                        


Tes regulates neural crest migration and axial elongation in Xenopus., Dingwell KS, Smith JC., Dev Biol. May 1, 2006; 293 (1): 252-67.                          


The characterization of amphibian nucleoplasmins yields new insight into their role in sperm chromatin remodeling., Frehlick LJ, Eirín-López JM, Jeffery ED, Hunt DF, Ausió J., BMC Genomics. April 28, 2006; 7 99.                


Cytostatic factor: an activity that puts the cell cycle on hold., Schmidt A, Rauh NR, Nigg EA, Mayer TU., J Cell Sci. April 1, 2006; 119 (Pt 7): 1213-8.

???pagination.result.page??? 1 2 3 ???pagination.result.next???