Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3350) Expression Attributions Wiki
XB-ANAT-302

Papers associated with lateral (and eef1a2)

Limit to papers also referencing gene:
Show all lateral papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest., Alkobtawi M., Cell Rep. June 22, 2021; 35 (12): 109289.                        


Integration of Wnt and FGF signaling in the Xenopus gastrula at TCF and Ets binding sites shows the importance of short-range repression by TCF in patterning the marginal zone., Kjolby RAS., Development. August 9, 2019; 146 (15):                           


Jmjd6a regulates GSK3β RNA splicing in Xenopus laevis eye development., Shin JY., PLoS One. July 30, 2019; 14 (7): e0219800.                      


Fam46a regulates BMP-dependent pre-placodal ectoderm differentiation in Xenopus., Watanabe T., Development. October 26, 2018; 145 (20):                                     


Dkk2 promotes neural crest specification by activating Wnt/β-catenin signaling in a GSK3β independent manner., Devotta A., Elife. July 23, 2018; 7                             


Dicer inactivation stimulates limb regeneration ability in Xenopus laevis., Zhang M., Wound Repair Regen. January 1, 2018; 26 (1): 46-53.          


FoxD1 protein interacts with Wnt and BMP signaling to differentially pattern mesoderm and neural tissue., Polevoy H., Int J Dev Biol. January 1, 2017; 61 (3-4-5): 293-302.              


Rdh10a Provides a Conserved Critical Step in the Synthesis of Retinoic Acid during Zebrafish Embryogenesis., D'Aniello E., PLoS One. September 1, 2015; 10 (9): e0138588.                  


Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration., Vega-López GA., Dev Dyn. August 1, 2015; 244 (8): 988-1013.                            


Transcription factor AP2 epsilon (Tfap2e) regulates neural crest specification in Xenopus., Hong CS., Dev Neurobiol. September 1, 2014; 74 (9): 894-906.                    


Congenital heart disease protein 5 associates with CASZ1 to maintain myocardial tissue integrity., Sojka S., Development. August 1, 2014; 141 (15): 3040-9.                


Kcnh1 voltage-gated potassium channels are essential for early zebrafish development., Stengel R., J Biol Chem. October 12, 2012; 287 (42): 35565-35575.            


Self-regulation of the head-inducing properties of the Spemann organizer., Inui M., Proc Natl Acad Sci U S A. September 18, 2012; 109 (38): 15354-9.                            


Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate., Fonar Y., Mol Biol Cell. July 1, 2011; 22 (13): 2409-21.                  


The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module., Rogers CD., BMC Dev Biol. January 26, 2011; 11 74.        


The Notch targets Esr1 and Esr10 are differentially regulated in Xenopus neural precursors., Lamar E., Development. August 1, 2005; 132 (16): 3619-30.                    


Early requirement of the transcriptional activator Sox9 for neural crest specification in Xenopus., Lee YH, Lee YH., Dev Biol. November 1, 2004; 275 (1): 93-103.          


The Meis3 protein and retinoid signaling interact to pattern the Xenopus hindbrain., Dibner C., Dev Biol. July 1, 2004; 271 (1): 75-86.              


Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways., Moore KB., Dev Cell. January 1, 2004; 6 (1): 55-67.                


FLASH, a component of the FAS-CAPSASE8 apoptotic pathway, is directly regulated by Hoxb4 in the notochord., Morgan R., Dev Biol. January 1, 2004; 265 (1): 105-12.              


The germ cell nuclear factor is required for retinoic acid signaling during Xenopus development., Barreto G., Mech Dev. April 1, 2003; 120 (4): 415-28.            


Cloning and developmental expression of Baf57 in Xenopus laevis., Domingos PM., Mech Dev. August 1, 2002; 116 (1-2): 177-81.    


The secreted glycoprotein Noelin-1 promotes neurogenesis in Xenopus., Moreno TA., Dev Biol. December 15, 2001; 240 (2): 340-60.                  


MAP kinase converts MyoD into an instructive muscle differentiation factor in Xenopus., Zetser A., Dev Biol. December 1, 2001; 240 (1): 168-81.                


Neural induction in the absence of mesoderm: beta-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus., Wessely O., Dev Biol. June 1, 2001; 234 (1): 161-73.              


foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain., Sullivan SA., Dev Biol. April 15, 2001; 232 (2): 439-57.            


The bHLH factors Xath5 and XNeuroD can upregulate the expression of XBrn3d, a POU-homeodomain transcription factor., Hutcheson DA., Dev Biol. April 15, 2001; 232 (2): 327-38.          


Mesendoderm induction and reversal of left-right pattern by mouse Gdf1, a Vg1-related gene., Wall NA., Dev Biol. November 15, 2000; 227 (2): 495-509.              


Zic3 is involved in the left-right specification of the Xenopus embryo., Kitaguchi T., Development. November 1, 2000; 127 (22): 4787-95.              


Gli2 functions in FGF signaling during antero-posterior patterning., Brewster R., Development. October 1, 2000; 127 (20): 4395-405.            


Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation., Koyano-Nakagawa N., Development. October 1, 2000; 127 (19): 4203-16.              


The maternal Xenopus beta-catenin signaling pathway, activated by frizzled homologs, induces goosecoid in a cell non-autonomous manner., Brown JD., Dev Growth Differ. August 1, 2000; 42 (4): 347-57.              


An essential role of the neuronal cell adhesion molecule contactin in development of the Xenopus primary sensory system., Fujita N., Dev Biol. May 15, 2000; 221 (2): 308-20.                


A novel guanine exchange factor increases the competence of early ectoderm to respond to neural induction., Morgan R., Mech Dev. October 1, 1999; 88 (1): 67-72.        


Neuronal differentiation and patterning in Xenopus: the role of cdk5 and a novel activator xp35.2., Philpott A., Dev Biol. March 1, 1999; 207 (1): 119-32.                      


A Meis family protein caudalizes neural cell fates in Xenopus., Salzberg A., Mech Dev. January 1, 1999; 80 (1): 3-13.          


Precocious expression of the Wilms' tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis., Wallingford JB., Dev Biol. October 1, 1998; 202 (1): 103-12.          


Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer., Casellas R., Dev Biol. June 1, 1998; 198 (1): 1-12.                


Murine cerberus homologue mCer-1: a candidate anterior patterning molecule., Biben C., Dev Biol. February 15, 1998; 194 (2): 135-51.    


XBMPRII, a novel Xenopus type II receptor mediating BMP signaling in embryonic tissues., Frisch A., Development. February 1, 1998; 125 (3): 431-42.                  


Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos., Bonstein L., Dev Biol. January 15, 1998; 193 (2): 156-68.            


Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development., Heller N., Mech Dev. December 1, 1997; 69 (1-2): 83-104.        


Xenopus hindbrain patterning requires retinoid signaling., Kolm PJ., Dev Biol. December 1, 1997; 192 (1): 1-16.              


Differential expression of Xenopus ribosomal protein gene XlrpS1c., Scholnick J., Biochim Biophys Acta. October 9, 1997; 1354 (1): 72-82.                      


Lens induction by Pax-6 in Xenopus laevis., Altmann CR., Dev Biol. May 1, 1997; 185 (1): 119-23.          


Induction of the prospective neural crest of Xenopus., Mayor R., Development. March 1, 1995; 121 (3): 767-77.                  


Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis., Moon RT., Development. September 1, 1993; 119 (1): 97-111.                  

???pagination.result.page??? 1