Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (190) Expression Attributions Wiki
XB-ANAT-3265

Papers associated with ceratohyal

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Teratogenic and neuro-behavioural toxic effects of bisphenol A (BPA) and B (BPB) on Xenopus laevis development., Metruccio F., Reprod Toxicol. January 1, 2024; 123 108496.              


Early life exposure to perfluorooctanesulfonate (PFOS) impacts vital biological processes in Xenopus laevis: Integrated morphometric and transcriptomic analyses., Ismail T., Ecotoxicol Environ Saf. January 1, 2024; 269 115820.                      


Common features of cartilage maturation are not conserved in an amphibian model., Nguyen JKB., Dev Dyn. November 1, 2023; 252 (11): 1375-1390.                


Phenotype-genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution., Hossain N., Dev Growth Differ. October 1, 2023; 65 (8): 481-497.                  


Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease., Mishra-Gorur K., Proc Natl Acad Sci U S A. April 18, 2023; 120 (16): e2214997120.                                            


OTUD3: A Lys6 and Lys63 specific deubiquitinase in early vertebrate development., Job F., Biochim Biophys Acta Gene Regul Mech. March 1, 2023; 1866 (1): 194901.                


Embryonic and skeletal development of the albino African clawed frog (Xenopus laevis)., Shan Z., J Anat. January 28, 2023;                               


Genome-wide analysis of copy-number variation in humans with cleft lip and/or cleft palate identifies COBLL1, RIC1, and ARHGEF38 as clefting genes., Lansdon LA., Am J Hum Genet. January 5, 2023; 110 (1): 71-91.                          


The cellular basis of cartilage growth and shape change in larval and metamorphosing Xenopus frogs., Rose CS., PLoS One. January 1, 2023; 18 (1): e0277110.                                  


Zmym4 is required for early cranial gene expression and craniofacial cartilage formation., Jourdeuil K., Front Cell Dev Biol. January 1, 2023; 11 1274788.          


CRISPR/Cas9-based simple transgenesis in Xenopus laevis., Shibata Y., Dev Biol. September 1, 2022; 489 76-83.                                                        


Normal development in Xenopus laevis: A complementary staging table for the skull based on cartilage and bone., MacKenzie EM., Dev Dyn. August 1, 2022; 251 (8): 1340-1356.          


Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of sonic hedgehog signaling components., Hantel F., J Cell Sci. May 1, 2022; 135 (9):                                     


Retinoid-X receptor agonists increase thyroid hormone competence in lower jaw remodeling of pre-metamorphic Xenopus laevis tadpoles., Mengeling BJ., PLoS One. April 13, 2022; 17 (4): e0266946.          


Systematic mapping of rRNA 2'-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis., Delhermite J., PLoS Genet. January 18, 2022; 18 (1): e1010012.                                                              


16p12.1 Deletion Orthologs are Expressed in Motile Neural Crest Cells and are Important for Regulating Craniofacial Development in Xenopus laevis., Lasser M., Front Genet. January 1, 2022; 13 833083.                        


inka1b expression in the head mesoderm is dispensable for facial cartilage development., Jeon H., Gene Expr Patterns. January 1, 2022; 45 119262.              


Generation of a new six1-null line in Xenopus tropicalis for study of development and congenital disease., Coppenrath K., Genesis. December 1, 2021; 59 (12): e23453.        


Deep learning is widely applicable to phenotyping embryonic development and disease., Naert T., Development. November 1, 2021; 148 (21):                                                                 


Function of chromatin modifier Hmgn1 during neural crest and craniofacial development., Ihewulezi C., Genesis. October 1, 2021; 59 (10): e23447.              


Sobp modulates the transcriptional activation of Six1 target genes and is required during craniofacial development., Tavares ALP., Development. September 1, 2021; 148 (17):                       


Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway., Wang H., Development. May 15, 2021; 148 (10):                                           


Using an aquatic model, Xenopus laevis, to uncover the role of chromodomain 1 in craniofacial disorders., Wyatt BH., Genesis. February 1, 2021; 59 (1-2): e23394.                        


Using Xenopus to analyze neurocristopathies like Kabuki syndrome., Schwenty-Lara J., Genesis. February 1, 2021; 59 (1-2): e23404.      


De novo mutations in FBRSL1 cause a novel recognizable malformation and intellectual disability syndrome., Ufartes R., Hum Genet. November 1, 2020; 139 (11): 1363-1379.                                        


Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development., Farley-Barnes KI., PLoS Genet. August 19, 2020; 16 (8): e1008967.                                    


NEIL1 and NEIL2 DNA glycosylases protect neural crest development against mitochondrial oxidative stress., Han D., Elife. September 30, 2019; 8                                     


Single Amino Acid Change Underlies Distinct Roles of H2A.Z Subtypes in Human Syndrome., Greenberg RS., Cell. September 5, 2019; 178 (6): 1421-1436.e24.                                


A new transgenic reporter line reveals Wnt-dependent Snai2 re-expression and cranial neural crest differentiation in Xenopus., Li J., Sci Rep. August 1, 2019; 9 (1): 11191.              


Adaptive correction of craniofacial defects in pre-metamorphic Xenopus laevis tadpoles involves thyroid hormone-independent tissue remodeling., Pinet K., Development. July 22, 2019; 146 (14):                               


PDGF-B: The missing piece in the mosaic of PDGF family role in craniofacial development., Corsinovi D., Dev Dyn. July 1, 2019; 248 (7): 603-612.            


How thyroid hormones and their inhibitors affect cartilage growth and shape in the frog Xenopus laevis., Rose CS., J Anat. January 1, 2019; 234 (1): 89-105.


Latrophilin2 is involved in neural crest cell migration and placode patterning in Xenopus laevis., Yokote N., Int J Dev Biol. January 1, 2019; 63 (1-2): 29-35.                    


Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis., Mills A., Front Physiol. January 1, 2019; 10 431.                                          


The Many Faces of Xenopus: Xenopus laevis as a Model System to Study Wolf-Hirschhorn Syndrome., Lasser M., Front Physiol. January 1, 2019; 10 817.                    


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.                      


Cdc42 regulates the cellular localization of Cdc42ep1 in controlling neural crest cell migration., Cohen S., J Mol Cell Biol. October 1, 2018; 10 (5): 376-387.                    


Developmental toxicity of dibutyl phthalate and citrate ester plasticizers in Xenopus laevis embryos., Xu Y, Xu Y., Chemosphere. August 1, 2018; 204 523-534.


Ketamine Modulates Zic5 Expression via the Notch Signaling Pathway in Neural Crest Induction., Shi Y, Shi Y., Front Mol Neurosci. February 7, 2018; 11 9.          


Neural crest development in Xenopus requires Protocadherin 7 at the lateral neural crest border., Bradley RS., Mech Dev. February 1, 2018; 149 41-52.                


Control of neural crest induction by MarvelD3-mediated attenuation of JNK signalling., Vacca B., Sci Rep. January 19, 2018; 8 (1): 1204.                              


Sequence and timing of early cranial skeletal development in Xenopus laevis., Lukas P., J Morphol. January 1, 2018; 279 (1): 62-74.            


Bapx1 upregulation is associated with ectopic mandibular cartilage development in amphibians., Lukas P., Zoological Lett. January 1, 2018; 4 16.                


PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation., Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.                                


Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration., Simon E., Biol Open. October 15, 2017; 6 (10): 1528-1540.                                  


Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula., Ding Y., Dev Biol. June 15, 2017; 426 (2): 176-187.                                  


Analysis of Craniocardiac Malformations in Xenopus using Optical Coherence Tomography., Deniz E., Sci Rep. February 14, 2017; 7 42506.          


Honeybee locomotion is impaired by Am-CaV3 low voltage-activated Ca2+ channel antagonist., Rousset M., Sci Rep. February 1, 2017; 7 41782.        


Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore-dependent disruption., Jimah JR., Elife. December 1, 2016; 5                   


Structural, Functional and Phylogenetic Analysis of Sperm Lysozyme-Like Proteins., Kalra S., PLoS One. November 1, 2016; 11 (11): e0166321.      

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???