Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (89) Expression Attributions Wiki
XB-ANAT-3317

Papers associated with midbrain tegmentum

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Cerebellar connections in Xenopus laevis. An HRP study., Gonzalez A., Anat Embryol (Berl). January 1, 1984; 169 (2): 167-76.


Observations on the development of cerebellar afferents in Xenopus laevis., van der Linden JA., Anat Embryol (Berl). January 1, 1987; 176 (4): 431-9.


A projection from the mesencephalic tegmentum to the nucleus isthmi in the frogs, Rana pipiens and Acris crepitans., Udin SB., Neuroscience. May 1, 1987; 21 (2): 631-7.


Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies., Takagi S., Dev Biol. July 1, 1987; 122 (1): 90-100.                    


Central organization of wave localization in the clawed frog, Xenopus laevis. I. Involvement and bilateral organization of the midbrain., Elepfandt A., Brain Behav Evol. January 1, 1988; 31 (6): 349-57.


Central projections of the nervus terminalis in four species of amphibians., Hofmann MH., Brain Behav Evol. January 1, 1989; 34 (5): 301-7.


The nervus terminalis in larval and adult Xenopus laevis., Hofmann MH., Dev Biol. September 25, 1989; 498 (1): 167-9.


An aberrant retinal pathway and visual centers in Xenopus tadpoles share a common cell surface molecule, A5 antigen., Fujisawa H., Dev Biol. October 1, 1989; 135 (2): 231-40.                


Neurons expressing thyrotropin-releasing hormone-like messenger ribonucleic acid are widely distributed in Xenopus laevis brain., Zoeller RT., Gen Comp Endocrinol. October 1, 1989; 76 (1): 139-46.      


Mapping of the presumptive brain regions in the neural plate of Xenopus laevis., Eagleson GW., J Neurobiol. April 1, 1990; 21 (3): 427-40.


Dopamine transporter: expression in Xenopus oocytes., Uhl GR., Brain Res Mol Brain Res. January 1, 1991; 9 (1-2): 23-9.


Early development of rubrospinal and cerebellorubral projections in Xenopus laevis., ten Donkelaar HJ., Brain Res Dev Brain Res. February 22, 1991; 58 (2): 297-300.


Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis., Lázár GY., J Comp Neurol. August 1, 1991; 310 (1): 45-67.                                                              


Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos., Papalopulu N., Development. December 1, 1991; 113 (4): 1145-58.                          


Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C., Durand GM., Proc Natl Acad Sci U S A. October 1, 1992; 89 (19): 9359-63.


Distribution of proneuropeptide Y-derived peptides in the brain of Rana esculenta and Xenopus laevis., Lázár G., J Comp Neurol. January 22, 1993; 327 (4): 551-71.


Distribution of tyrosine hydroxylase and dopamine immunoreactivities in the brain of the South African clawed frog Xenopus laevis., González A., Anat Embryol (Berl). February 1, 1993; 187 (2): 193-201.


'Choline/orphan V8-2-1/creatine transporter' mRNA is expressed in nervous, renal and gastrointestinal systems., Gonzalez AM., Brain Res Mol Brain Res. May 1, 1994; 23 (3): 266-70.


Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: an immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine., González A., J Comp Neurol. August 1, 1994; 346 (1): 63-79.


The dorsal column-medial lemniscal projection of anuran amphibians., Muñoz A., Eur J Morphol. August 1, 1994; 32 (2-4): 283-7.


Neuropeptide Y in the developing and adult brain of the South African clawed toad Xenopus laevis., Tuinhof R., J Chem Neuroanat. October 1, 1994; 7 (4): 271-83.


The expression pattern of two zebrafish achaete-scute homolog (ash) genes is altered in the embryonic brain of the cyclops mutant., Allende ML., Dev Biol. December 1, 1994; 166 (2): 509-30.


Frog prohormone convertase PC2 mRNA has a mammalian-like expression pattern in the central nervous system and is colocalized with a subset of thyrotropin-releasing hormone-expressing neurons., Pu LP., J Comp Neurol. March 27, 1995; 354 (1): 71-86.


Ontogeny of vasotocinergic and mesotocinergic systems in the brain of the South African clawed frog Xenopus laevis., González A., J Chem Neuroanat. July 1, 1995; 9 (1): 27-40.


Development of catecholamine systems in the central nervous system of the newt Pleurodeles waltlii as revealed by tyrosine hydroxylase immunohistochemistry., González A., J Comp Neurol. September 11, 1995; 360 (1): 33-48.


Modulation of GABAA receptor function by G protein-coupled 5-HT2C receptors., Huidobro-Toro JP., Neuropharmacology. January 1, 1996; 35 (9-10): 1355-63.


Larval development of tectal efferents and afferents in Xenopus laevis (Amphibia Anura)., Chahoud BH., J Hirnforsch. January 1, 1996; 37 (4): 519-35.


Immunohistochemical investigation of gamma-aminobutyric acid ontogeny and transient expression in the central nervous system of Xenopus laevis tadpoles., Barale E., J Comp Neurol. April 29, 1996; 368 (2): 285-94.


Nitric oxide synthase in the brain of a urodele amphibian (Pleurodeles waltl) and its relation to catecholaminergic neuronal structures., González A., Dev Biol. July 15, 1996; 727 (1-2): 49-64.


Neuropeptide Y: localization in the brain and pituitary of the developing frog (Rana esculenta)., D'Aniello B., Cell Tissue Res. August 1, 1996; 285 (2): 253-9.


The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S., Dev Biol. October 10, 1996; 179 (1): 102-15.              


Involvement of Livertine, a hepatocyte growth factor family member, in neural morphogenesis., Ruiz i Altaba A., Mech Dev. December 1, 1996; 60 (2): 207-20.          


Xefiltin, a new low molecular weight neuronal intermediate filament protein of Xenopus laevis, shares sequence features with goldfish gefiltin and mammalian alpha-internexin and differs in expression from XNIF and NF-L., Zhao Y., J Comp Neurol. January 20, 1997; 377 (3): 351-64.            


Basal ganglia organization in amphibians: catecholaminergic innervation of the striatum and the nucleus accumbens., Marín O., J Comp Neurol. February 3, 1997; 378 (1): 50-69.


Basal ganglia organization in amphibians: afferent connections to the striatum and the nucleus accumbens., Marín O., J Comp Neurol. February 3, 1997; 378 (1): 16-49.


Spinal ascending pathways in amphibians: cells of origin and main targets., Muñoz A., J Comp Neurol. February 10, 1997; 378 (2): 205-28.


Gli1 is a target of Sonic hedgehog that induces ventral neural tube development., Lee J., Development. July 1, 1997; 124 (13): 2537-52.                  


Basal ganglia organization in amphibians: development of striatal and nucleus accumbens connections with emphasis on the catecholaminergic inputs., Márin O., J Comp Neurol. July 7, 1997; 383 (3): 349-69.


Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis., Tuinhof R., Cell Tissue Res. May 1, 1998; 292 (2): 251-65.


Comparative analysis of GnRH neuronal systems in the amphibian brain., Rastogi RK., Gen Comp Endocrinol. December 1, 1998; 112 (3): 330-45.      


Serotonergic innervation of the pituitary pars intermedia of xenopus laevis., Ubink R., J Neuroendocrinol. March 1, 1999; 11 (3): 211-9.


A new secreted protein that binds to Wnt proteins and inhibits their activities., Hsieh JC., Nature. April 1, 1999; 398 (6726): 431-6.    


DCC plays a role in navigation of forebrain axons across the ventral midbrain commissure in embryonic xenopus., Anderson RB., Dev Biol. January 15, 2000; 217 (2): 244-53.          


Chemoarchitecture of the anuran auditory midbrain., Endepols H., Brain Res Brain Res Rev. September 1, 2000; 33 (2-3): 179-98.


Molecular cloning and embryonic expression of Xenopus Six homeobox genes., Ghanbari H., Mech Dev. March 1, 2001; 101 (1-2): 271-7.                                                                        


Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin., Sánchez-Camacho C., J Comp Neurol. May 28, 2001; 434 (2): 186-208.


Developmental regulation of CPG15 expression in Xenopus., Nedivi E., J Comp Neurol. July 9, 2001; 435 (4): 464-73.                    


Identification and expression of zebrafish Iroquois homeobox gene irx1., Cheng CW., Dev Genes Evol. September 1, 2001; 211 (8-9): 442-4.


Nitric oxide is an essential negative regulator of cell proliferation in Xenopus brain., Peunova N., J Neurosci. November 15, 2001; 21 (22): 8809-18.              


Cannabinoid receptor CB1-like and glutamic acid decarboxylase-like immunoreactivities in the brain of Xenopus laevis., Cesa R., Cell Tissue Res. December 1, 2001; 306 (3): 391-8.

???pagination.result.page??? 1 2 ???pagination.result.next???