Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (89) Expression Attributions Wiki
XB-ANAT-3317

Papers associated with midbrain tegmentum

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis., Morona R., J Comp Neurol. October 1, 2020; 528 (14): 2361-2403.                                                                


An Innate Color Preference Displayed by Xenopus Tadpoles Is Persistent and Requires the Tegmentum., Hunt JE., Front Behav Neurosci. May 12, 2020; 14 71.        


Distribution and neuronal circuit of spexin 1/2 neurons in the zebrafish CNS., Kim E., Sci Rep. March 22, 2019; 9 (1): 5025.              


Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts., Lametschwandtner A., J Morphol. July 1, 2018; 279 (7): 950-969.                                                                                              


Expression patterns of prune2 is regulated by Notch and retinoic acid signaling pathways in the zebrafish embryogenesis., Anuppalle M., Gene Expr Patterns. January 1, 2017; 23-24 45-51.


The frog inner ear: picture perfect?, Mason MJ., J Assoc Res Otolaryngol. April 1, 2015; 16 (2): 171-88.


Dopamine: a parallel pathway for the modulation of spinal locomotor networks., Sharples SA., Front Neural Circuits. June 16, 2014; 8 55.          


Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis., Bandín S., J Chem Neuroanat. May 1, 2014; 57-58 24-41.


The Xenopus amygdala mediates socially appropriate vocal communication signals., Hall IC., J Neurosci. September 4, 2013; 33 (36): 14534-48.                


Expression patterns of Ephs and ephrins throughout retinotectal development in Xenopus laevis., Higenell V., Dev Neurobiol. April 1, 2012; 72 (4): 547-63.              


Local translation of extranuclear lamin B promotes axon maintenance., Yoon BC., Cell. February 17, 2012; 148 (4): 752-64.                              


Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians., Moreno N., J Comp Neurol. February 1, 2012; 520 (2): 330-63.


GABA expression and regulation by sensory experience in the developing visual system., Miraucourt LS., PLoS One. January 1, 2012; 7 (1): e29086.            


Expression patterns of genes encoding small GTPases Ras-dva-1 and Ras-dva-2 in the Xenopus laevis tadpoles., Tereshina MB., Gene Expr Patterns. January 1, 2011; 11 (1-2): 156-61.      


Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system., López JM., J Chem Neuroanat. December 1, 2010; 40 (4): 325-38.


Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2., Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.                              


The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system., Bradaia A., Proc Natl Acad Sci U S A. November 24, 2009; 106 (47): 20081-6.


Selective alpha7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes., Sydserff S., Biochem Pharmacol. October 1, 2009; 78 (7): 880-8.


Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians., Morona R., J Comp Neurol. August 10, 2009; 515 (5): 503-37.


Complementary expression of HSPG 6-O-endosulfatases and 6-O-sulfotransferase in the hindbrain of Xenopus laevis., Winterbottom EF., Gene Expr Patterns. March 1, 2009; 9 (3): 166-72.              


A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides., Liu Q., J Neurosci. January 28, 2009; 29 (4): 918-29.


Pleiotropic effects in Eya3 knockout mice., Söker T., BMC Dev Biol. June 23, 2008; 8 118.                    


Region-specific effects of N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide on nicotine-induced increase in extracellular dopamine in vivo., Rahman S., Br J Pharmacol. February 1, 2008; 153 (4): 792-804.


Neuropsychotoxicity of abused drugs: molecular and neural mechanisms of neuropsychotoxicity induced by methamphetamine, 3,4-methylenedioxymethamphetamine (ecstasy), and 5-methoxy-N,N-diisopropyltryptamine (foxy)., Nakagawa T., J Pharmacol Sci. January 1, 2008; 106 (1): 2-8.


Origins of spinal cholinergic pathways in amphibians demonstrated by retrograde transport and choline acetyltransferase immunohistochemistry., López JM., Neurosci Lett. September 25, 2007; 425 (2): 73-7.


Neogenin interacts with RGMa and netrin-1 to guide axons within the embryonic vertebrate forebrain., Wilson NH., Dev Biol. August 15, 2006; 296 (2): 485-98.                      


Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation., Van Campenhout C., Dev Biol. June 1, 2006; 294 (1): 203-19.                


Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors., Hejazi N., Mol Pharmacol. March 1, 2006; 69 (3): 991-7.


Neuroanatomical distribution of cannabinoid receptor gene expression in the brain of the rough-skinned newt, Taricha granulosa., Hollis DM., Brain Behav Evol. January 1, 2006; 67 (3): 135-49.


Zebrafish id2 developmental expression pattern contains evolutionary conserved and species-specific characteristics., Chong SW., Dev Dyn. December 1, 2005; 234 (4): 1055-63.


Calbindin-D28k immunoreactivity in the spinal cord of Xenopus laevis and its participation in ascending and descending projections., Morona R., Brain Res Bull. September 15, 2005; 66 (4-6): 550-4.


LIM-homeodomain genes as territory markers in the brainstem of adult and developing Xenopus laevis., Moreno N., J Comp Neurol. May 9, 2005; 485 (3): 240-54.


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              


Distribution of GABA-like immunoreactive cell bodies in the brains of two amphibians, Rana catesbeiana and Xenopus laevis., Hollis DM., Brain Behav Evol. January 1, 2005; 65 (2): 127-42.


Autoregulation of canonical Wnt signaling controls midbrain development., Kunz M., Dev Biol. September 15, 2004; 273 (2): 390-401.          


Characterization of Xenopus Phox2a and Phox2b defines expression domains within the embryonic nervous system and early heart field., Talikka M., Gene Expr Patterns. September 1, 2004; 4 (5): 601-7.      


Xenopus laevis CB1 cannabinoid receptor: molecular cloning and mRNA distribution in the central nervous system., Cottone E., J Comp Neurol. September 29, 2003; 464 (4): 487-96.        


The nicotinic alpha 4 beta 2 receptor selective agonist, TC-2559, increases dopamine neuronal activity in the ventral tegmental area of rat midbrain slices., Chen Y., Neuropharmacology. September 1, 2003; 45 (3): 334-44.


Zebrafish atonal homologue zath3 is expressed during neurogenesis in embryonic development., Wang X., Dev Dyn. August 1, 2003; 227 (4): 587-92.


Cannabinoid receptor CB1-like and glutamic acid decarboxylase-like immunoreactivities in the brain of Xenopus laevis., Cesa R., Cell Tissue Res. December 1, 2001; 306 (3): 391-8.


Nitric oxide is an essential negative regulator of cell proliferation in Xenopus brain., Peunova N., J Neurosci. November 15, 2001; 21 (22): 8809-18.              


Identification and expression of zebrafish Iroquois homeobox gene irx1., Cheng CW., Dev Genes Evol. September 1, 2001; 211 (8-9): 442-4.


Developmental regulation of CPG15 expression in Xenopus., Nedivi E., J Comp Neurol. July 9, 2001; 435 (4): 464-73.                    


Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin., Sánchez-Camacho C., J Comp Neurol. May 28, 2001; 434 (2): 186-208.


Molecular cloning and embryonic expression of Xenopus Six homeobox genes., Ghanbari H., Mech Dev. March 1, 2001; 101 (1-2): 271-7.                                                                        


Chemoarchitecture of the anuran auditory midbrain., Endepols H., Brain Res Brain Res Rev. September 1, 2000; 33 (2-3): 179-98.


DCC plays a role in navigation of forebrain axons across the ventral midbrain commissure in embryonic xenopus., Anderson RB., Dev Biol. January 15, 2000; 217 (2): 244-53.          


A new secreted protein that binds to Wnt proteins and inhibits their activities., Hsieh JC., Nature. April 1, 1999; 398 (6726): 431-6.    


Serotonergic innervation of the pituitary pars intermedia of xenopus laevis., Ubink R., J Neuroendocrinol. March 1, 1999; 11 (3): 211-9.


Comparative analysis of GnRH neuronal systems in the amphibian brain., Rastogi RK., Gen Comp Endocrinol. December 1, 1998; 112 (3): 330-45.      

???pagination.result.page??? 1 2 ???pagination.result.next???