Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (89) Expression Attributions Wiki

Papers associated with midbrain tegmentum

Limit to papers also referencing gene:
Results 1 - 50 of 89 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

An Innate Color Preference Displayed by Xenopus Tadpoles Is Persistent and Requires the Tegmentum., Hunt JE., Front Behav Neurosci. January 1, 2020; 14 71.        

Distribution and neuronal circuit of spexin 1/2 neurons in the zebrafish CNS., Kim E., Sci Rep. January 1, 2019; 9 (1): 5025.              

Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts., Lametschwandtner A., J Morphol. January 1, 2018; 279 (7): 950-969.                                                                                              

Expression patterns of prune2 is regulated by Notch and retinoic acid signaling pathways in the zebrafish embryogenesis., Anuppalle M., Gene Expr Patterns. January 1, 2017; 23-24 45-51.

The frog inner ear: picture perfect?, Mason MJ., J Assoc Res Otolaryngol. April 1, 2015; 16 (2): 171-88.

Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis., Bandín S., J Chem Neuroanat. May 1, 2014; 57-58 24-41.

Dopamine: a parallel pathway for the modulation of spinal locomotor networks., Sharples SA., Front Neural Circuits. January 1, 2014; 8 55.          

The Xenopus amygdala mediates socially appropriate vocal communication signals., Hall IC., J Neurosci. September 4, 2013; 33 (36): 14534-48.                

Local translation of extranuclear lamin B promotes axon maintenance., Yoon BC., Cell. February 17, 2012; 148 (4): 752-64.                              

Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians., Moreno N., J Comp Neurol. February 1, 2012; 520 (2): 330-63.

GABA expression and regulation by sensory experience in the developing visual system., Miraucourt LS., PLoS One. January 1, 2012; 7 (1): e29086.            

Expression patterns of genes encoding small GTPases Ras-dva-1 and Ras-dva-2 in the Xenopus laevis tadpoles., Tereshina MB., Gene Expr Patterns. January 1, 2011; 11 (1-2): 156-61.      

Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system., López JM., J Chem Neuroanat. December 1, 2010; 40 (4): 325-38.

Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2., Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.                              

The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system., Bradaia A., Proc Natl Acad Sci U S A. November 24, 2009; 106 (47): 20081-6.

Selective alpha7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes., Sydserff S., Biochem Pharmacol. October 1, 2009; 78 (7): 880-8.

Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians., Morona R., J Comp Neurol. August 10, 2009; 515 (5): 503-37.

Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians., Morona R., J Comp Neurol. August 10, 2009; 515 (5): spc1.

Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians., Morona R., J Comp Neurol. June 3, 2009; 515 (6): spc1.

Complementary expression of HSPG 6-O-endosulfatases and 6-O-sulfotransferase in the hindbrain of Xenopus laevis., Winterbottom EF., Gene Expr Patterns. March 1, 2009; 9 (3): 166-72.              

A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides., Liu Q., J Neurosci. January 28, 2009; 29 (4): 918-29.

Pleiotropic effects in Eya3 knockout mice., Söker T., BMC Dev Biol. July 28, 2008; 8 118.                    

Region-specific effects of N,N''-dodecane-1,12-diyl-bis-3-picolinium dibromide on nicotine-induced increase in extracellular dopamine in vivo., Rahman S., Br J Pharmacol. February 1, 2008; 153 (4): 792-804.

Neuropsychotoxicity of abused drugs: molecular and neural mechanisms of neuropsychotoxicity induced by methamphetamine, 3,4-methylenedioxymethamphetamine (ecstasy), and 5-methoxy-N,N-diisopropyltryptamine (foxy)., Nakagawa T., J Pharmacol Sci. January 1, 2008; 106 (1): 2-8.

Origins of spinal cholinergic pathways in amphibians demonstrated by retrograde transport and choline acetyltransferase immunohistochemistry., López JM., Neurosci Lett. September 25, 2007; 425 (2): 73-7.

Neogenin interacts with RGMa and netrin-1 to guide axons within the embryonic vertebrate forebrain., Wilson NH., Dev Biol. August 15, 2006; 296 (2): 485-98.                      

Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors., Hejazi N., Mol Pharmacol. March 1, 2006; 69 (3): 991-7.

Neuroanatomical distribution of cannabinoid receptor gene expression in the brain of the rough-skinned newt, Taricha granulosa., Hollis DM., Brain Behav Evol. January 1, 2006; 67 (3): 135-49.

Zebrafish id2 developmental expression pattern contains evolutionary conserved and species-specific characteristics., Chong SW., Dev Dyn. December 1, 2005; 234 (4): 1055-63.

Calbindin-D28k immunoreactivity in the spinal cord of Xenopus laevis and its participation in ascending and descending projections., Morona R., Brain Res Bull. September 15, 2005; 66 (4-6): 550-4.

LIM-homeodomain genes as territory markers in the brainstem of adult and developing Xenopus laevis., Moreno N., J Comp Neurol. May 9, 2005; 485 (3): 240-54.

Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              

Distribution of GABA-like immunoreactive cell bodies in the brains of two amphibians, Rana catesbeiana and Xenopus laevis., Hollis DM., Brain Behav Evol. January 1, 2005; 65 (2): 127-42.

Autoregulation of canonical Wnt signaling controls midbrain development., Kunz M., Dev Biol. September 15, 2004; 273 (2): 390-401.          

Characterization of Xenopus Phox2a and Phox2b defines expression domains within the embryonic nervous system and early heart field., Talikka M., Gene Expr Patterns. September 1, 2004; 4 (5): 601-7.      

Xenopus laevis CB1 cannabinoid receptor: molecular cloning and mRNA distribution in the central nervous system., Cottone E., J Comp Neurol. September 29, 2003; 464 (4): 487-96.        

The nicotinic alpha 4 beta 2 receptor selective agonist, TC-2559, increases dopamine neuronal activity in the ventral tegmental area of rat midbrain slices., Chen Y., Neuropharmacology. September 1, 2003; 45 (3): 334-44.

Zebrafish atonal homologue zath3 is expressed during neurogenesis in embryonic development., Wang X., Dev Dyn. August 1, 2003; 227 (4): 587-92.

Cannabinoid receptor CB1-like and glutamic acid decarboxylase-like immunoreactivities in the brain of Xenopus laevis., Cesa R., Cell Tissue Res. December 1, 2001; 306 (3): 391-8.

Nitric oxide is an essential negative regulator of cell proliferation in Xenopus brain., Peunova N., J Neurosci. November 15, 2001; 21 (22): 8809-18.              

Identification and expression of zebrafish Iroquois homeobox gene irx1., Cheng CW., Dev Genes Evol. September 1, 2001; 211 (8-9): 442-4.

Developmental regulation of CPG15 expression in Xenopus., Nedivi E., J Comp Neurol. July 9, 2001; 435 (4): 464-73.                    

Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin., Sánchez-Camacho C., J Comp Neurol. May 28, 2001; 434 (2): 186-208.

Molecular cloning and embryonic expression of Xenopus Six homeobox genes., Ghanbari H., Mech Dev. March 1, 2001; 101 (1-2): 271-7.                                                                        

Chemoarchitecture of the anuran auditory midbrain., Endepols H., Brain Res Brain Res Rev. September 1, 2000; 33 (2-3): 179-98.

DCC plays a role in navigation of forebrain axons across the ventral midbrain commissure in embryonic xenopus., Anderson RB., Dev Biol. January 15, 2000; 217 (2): 244-53.          

A new secreted protein that binds to Wnt proteins and inhibits their activities., Hsieh JC., Nature. April 1, 1999; 398 (6726): 431-6.    

Serotonergic innervation of the pituitary pars intermedia of xenopus laevis., Ubink R., J Neuroendocrinol. March 1, 1999; 11 (3): 211-9.

Comparative analysis of GnRH neuronal systems in the amphibian brain., Rastogi RK., Gen Comp Endocrinol. December 1, 1998; 112 (3): 330-45.      

Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis., Tuinhof R., Cell Tissue Res. May 1, 1998; 292 (2): 251-65.

Page(s): 1 2 Next