Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (1127) Expression Attributions Wiki
XB-ANAT-3329

Papers associated with pectoral appendage (and sox2)

Limit to papers also referencing gene:
Show all pectoral appendage papers
Results 1 - 23 of 23 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of Xenopus tropicalis Immature Sertoli Cells., Nguyen TMX., Stem Cells Int. January 1, 2019; 2019 8387478.                                            


Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis., Gere-Becker MB., Development. January 1, 2018; 145 (12):                                   


A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells., Buitrago-Delgado E., Dev Biol. January 1, 2018; 444 (2): 50-61.                


JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis., Tapia VS., Regeneration (Oxf). February 1, 2017; 4 (1): 21-35.                          


Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure., Suzuki M., Development. January 1, 2017; 144 (7): 1307-1316.                            


Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus., Néant I., Biochim Biophys Acta. September 1, 2015; 1853 (9): 2077-85.  


Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation., Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.                                  


Retinoic acid regulation by CYP26 in vertebrate lens regeneration., Thomas AG., Dev Biol. February 15, 2014; 386 (2): 291-301.            


Loss of Xenopus cadherin-11 leads to increased Wnt/β-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest., Koehler A., Dev Biol. November 1, 2013; 383 (1): 132-45.                        


Germline Transgenic Methods for Tracking Cells and Testing Gene Function during Regeneration in the Axolotl., Khattak S., Stem Cell Reports. January 1, 2013; 1 (1): 90-103.            


Defining progressive stages in the commitment process leading to embryonic lens formation., Jin H., Genesis. October 1, 2012; 50 (10): 728-40.              


Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency., Hammachi F., Cell Rep. February 23, 2012; 1 (2): 99-109.                          


Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo., Lim JW., Development. January 1, 2011; 138 (1): 33-44.                    


Delta-Notch signaling is involved in the segregation of the three germ layers in Xenopus laevis., Revinski DR., Dev Biol. March 15, 2010; 339 (2): 477-92.            


The posteriorizing gene Gbx2 is a direct target of Wnt signalling and the earliest factor in neural crest induction., Li B., Development. October 1, 2009; 136 (19): 3267-78.            


Bone morphogenetic protein 15 (BMP15) acts as a BMP and Wnt inhibitor during early embryogenesis., Di Pasquale E., J Biol Chem. September 18, 2009; 284 (38): 26127-36.                        


Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo., Rogers CD., Dev Biol. January 1, 2008; 313 (1): 307-19.                  


Vertebrate Ctr1 coordinates morphogenesis and progenitor cell fate and regulates embryonic stem cell differentiation., Haremaki T., Proc Natl Acad Sci U S A. July 17, 2007; 104 (29): 12029-34.                    


Tsukushi controls ectodermal patterning and neural crest specification in Xenopus by direct regulation of BMP4 and X-delta-1 activity., Kuriyama S., Development. January 1, 2006; 133 (1): 75-88.            


XBP1 forms a regulatory loop with BMP-4 and suppresses mesodermal and neural differentiation in Xenopus embryos., Cao Y, Cao Y., Mech Dev. January 1, 2006; 123 (1): 84-96.      


Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor., Brugmann SA., Development. December 1, 2004; 131 (23): 5871-81.                    


XIdax, an inhibitor of the canonical Wnt pathway, is required for anterior neural structure formation in Xenopus., Michiue T., Dev Dyn. May 1, 2004; 230 (1): 79-90.        


Amphibian in vitro heart induction: a simple and reliable model for the study of vertebrate cardiac development., Ariizumi T., Int J Dev Biol. September 1, 2003; 47 (6): 405-10.      

Page(s): 1