Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (1127) Expression Attributions Wiki
XB-ANAT-3329

Papers associated with pectoral appendage (and vim)

Limit to papers also referencing gene:
Show all pectoral appendage papers
Results 1 - 12 of 12 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain., Thompson AJ., Elife. January 1, 2019; 8                     


Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of Xenopus tropicalis Immature Sertoli Cells., Nguyen TMX., Stem Cells Int. January 1, 2019; 2019 8387478.                                            


JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis., Tapia VS., Regeneration (Oxf). February 1, 2017; 4 (1): 21-35.                          


The POU homeobox protein Oct-1 regulates radial glia formation downstream of Notch signaling., Kiyota T., Dev Biol. March 15, 2008; 315 (2): 579-92.      


Glial-defined rhombomere boundaries in developing Xenopus hindbrain., Yoshida M., J Comp Neurol. August 14, 2000; 424 (1): 47-57.              


Occurrence of proteinaceous 10-nm filaments throughout the cytoplasm of algae of the order Dasycladales., Berger S., Exp Cell Res. May 1, 1998; 240 (2): 176-86.


Differential organization of desmin and vimentin in muscle is due to differences in their head domains., Cary RB., J Cell Biol. July 1, 1994; 126 (2): 445-56.


An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes., Rungger-Brändle E., J Cell Biol. August 1, 1989; 109 (2): 705-16.              


Cytokeratin filaments and desmosomes in the epithelioid cells of the perineurial and arachnoidal sheaths of some vertebrate species., Achtstätter T., Differentiation. May 1, 1989; 40 (2): 129-49.                        


Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin., Herrmann H., Development. February 1, 1989; 105 (2): 299-307.              


Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin., Herrmann H., Development. February 1, 1989; 105 (2): 279-98.                      


Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos., Klymkowsky MW., Development. July 1, 1987; 100 (3): 543-57.              

Page(s): 1